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Lebesgue Measurable Functions



Definition and Properties of Measurable Functions

All functions considered here will be R-valued, where R is the extended real line
R ∪ {±∞} = [−∞, ∞]. For a function f : E ⊂ Rp −→ R, we will use the following
abbreviation {f < c} for {x ∈ E : f (x) < c} where c ∈ R. Similar abbreviations will be used
for {f > c}, {f ≥ c}, {f ≤ c}, and {f = c}.

Proposition (1)
Let f : E ⊂ Rp −→ R. Then the following properties are equivalent:

1. For every c ∈ R, {f > c} is measurable;

2. For every c ∈ R, {f ≥ c} is measurable;

3. For every c ∈ R, {f < c} is measurable;

4. For every c ∈ R, {f ≤ c} is measurable.

Moreover, each one of these properties implies that {f = c} is measurable.

Proof.
This proposition follows from the fact that the collection M of measurable sets is a σ-algebra: (1) ⇐⇒ (4) and
(2) ⇐⇒ (3) follow from {f ≤ c} = R\{f > c} and {f ≥ c} = R\{f < c}; (1) =⇒ (2) and (2) =⇒ (1) follow

from {f ≥ c} =
∞⋂

n=1

{f > c −
1

n
} and {f > c} =

∞⋃
n=1

{f ≥ c +
1

n
}.

Now assume that anyone of the four property holds (and so all four hold). Let c ∈ R. Then {f = c} = {f ≥ c} ∩ {f ≤ c}

is measurable. Also {f = −∞} =

∞⋂
n=1

{f < −n} and {f = ∞} =

∞⋂
n=1

{f > n} are measurable.



A function f : E ⊂ Rp −→ R defined on the measurable set E is said to be Lebesgue
measurable if it satisfies any one of the properties of Proposition 1.

Theorem (2)
Let f : E ⊂ Rp −→ R with E measurable. Then f is measurable if and only if for every open
set U ⊂ R, the pre-image f−1(U) = {x ∈ E : f (x) ∈ U} is a measurable set in Rp.

Proof.
"⇐=" Suppose that for every open set U ⊂ R, f−1(U) is measurable. Let c ∈ R. Since (c, ∞) ⊂ R is open, then
{f > c} is measurable, then f is measurable.

"=⇒" Suppose that f is measurable (and so it satisfies all four properties of Proposition 1). Let U ⊂ R be an open set. Then

there is a countable collection of open and bounded intervals {Ij}j∈N = {(aj, bj)}j∈N such that U =
⋃

j∈N . Note that

Ij = (aj, ∞) ∩ (−∞, bj) so that f−1(Ij) = {f < bj} ∩ {f > aj} and f−1(Ij) is measurable. Therefore

f−1
(U) =

∞⋃
j=1

f−1
(Ij) is measurable as a countable union of measurable sets.

Theorem (3)
Let f : E ⊂ Rp −→ R be a continuous function and E measurable. Then f is measurable

Proof.
Let U ⊂ R be an open set. It suffices to show that f−1(U) is measurable (Theorem 2). Since f is continuous, then there exists

an open set V ⊂ Rp such that f−1(U) = E ∩ V . Both E and V are measurable and so is their intersection f−1(U)



Recall that a property (P) is said to hold almost everywhere (abbreviated a.e) in a set E if there
exists a set Z ⊂ E of measure zero such that (P) holds for every point x ∈ E\Z.

Theorem (4)
Let f : E ⊂ Rp −→ R defined on the measurable set E.

1. Suppose that f is measurable Let g : E −→ R. If g = f a.e. on E, then g is measurable
and for every c ∈ R, m ({g > c}) = m ({f > c})

2. The function f is measurable on E if and only if for every measurable set A ⊂ E the
restrictions fA and fE\A of f to A and to E\A are measurable.

Proof.
1. Let Z = {x ∈ E : g(x) ̸= f (x)} then m(Z) = 0. Let c ∈ R We need to show that {g > c} is measurable. We

have

{g > c} = {x ∈ Z : g(x) > c}∪{x ∈ E\Z : f (x) > c} = {x ∈ Z : g(x) > c}∪ ({f > c} ∩ (E\Z)) .

The set {g > c} is measurable as an intersection of three measurable sets. Note that since
{f > c} = {x ∈ E\Z : f (x) > c} ∪ {x ∈ Z : f (x) > c} and m(Z) = 0, then
m({f > c}) = m ({x ∈ E\Z : f (x) > c}). As a consequence we have m ({g > c}) = m ({f > c}).

2. Let A ⊂ E measurable and c ∈ R. We have

{f > c} = {fA > c} ∪ {fE\A > c} = ({f > c} ∩ A) ∪ ({f > c} ∩ (E\A)) .

It follows immediately that f is measurable if both fA and fE\A are measurable.



Operations on Measurable Functions

Theorem (5)
Let f : E ⊂ Rp −→ R be finite a.e. in E and let α : R −→ R be a continuous function.
Assume that f is measurable. Then the composition α ◦ f is measurable.

Proof.
Let Z = {f = ±∞}. Then Z has measure zero. Set h = α ◦ f so that h is well defined on E\Z by h(x) = α(f (x)). Let

U ⊂ R be an open set. We need to verify that h−1(U) = f−1(α−1(U)) ∩ (E\Z) is measurable. Since α is continuous,

then α−1(U) is open. Therefore, f−1(α−1(U)) is measurable and so is h−1(U).

Remark (1)
It follows from Theorem 5 that if f is measurable, then so are the functions |f |, f 2, |f |q for
q > 0, eλf etc.

Let E ⊂ Rp. The characteristic function of E is the function

χE : Rp −→ R ; χE (x) =
{

1 if x ∈ E
0 if x /∈ E .

It follows directly from the definition of measurable functions that χE is measurable if and only
if E is measurable.



Remark (2)
Composition of measurable functions is not necessarily measurable. Consider the
ψ(x) = x + ϕ(x) where ϕ is the Cantor-Lebesgue function. We know that ψ is a
homeomorphism between [0, 1] and [0, 2] and that there exists a set S ⊂ C such ψ(S) is not
measurable (where C is the Cantor set). We can extend ψ as a global homeomorphism
Ψ : R −→ R (for example Ψ(x) = 2x for x < 0 and for x > 1). Hence Ψ−1 is continuous.
Then the composition h = χS ◦Ψ−1 is not measurable. Indeed, {h = 1} = Ψ(χS (1)) = ψ(S)
is not measurable.

Remark (3)
Given a function h, its measurability is not affected if the values are changed on a set of
measure zero. With this understanding, the sum f + g of two functions valued on [−∞, ∞] is
well defined provided that the set of indeterminacy where f (x) = ∞ and g(x) = −∞ has
measure zero. Similarly for the product fg when the product takes the form 0 · ∞.

Theorem (6)
Let f , g : E −→ R be measurable functions that are finite a.e. in E. Then

1. The sum f + g and difference f − g are measurable.

2. The product fg is measurable.

3. The quotient f/g is measurable provided that g ̸= 0 a.e. in E.



Proof.
1. First observe that the set {f > g} = {x ∈ E : f (x) > g(x)} is measurable. Indeed it can be written as a countable

union of measurable sets: {f > g} = ∪r∈Q ({f > r} ∩ {g < r}). Next, for any λ ∈ R, the function f + λ or
−f + λ is measurable since {f + λ > c} = {f > c − λ} is measurable. Now to prove that f + g is measurable,
let c ∈ R, then {f + g > c} = {f > c − g} is measurable by the above observations.

2. We have 4fg = (f + g)2 − (f − g)2 . It follows from part 1 that f ± g are measurable and so (f ± g)2 are also
measurable (Theorem 4). Consequently, fg is measurable.

3. Since up to a set of measure zero, we have {(1/g) > c} = {g < (1/c)}, the measurability of g implies that of
1/g and so of the quotient f/g (part 2)

Let f1, · · · , fn be functions defined on the same domain E ⊂ Rp. Define the functions
max{f1, · · · , fn} and min{f1, · · · , fn} in E by

max{f1, · · · , fn}(x) = max{f1(x), · · · , fn(x)} and
min{f1, · · · , fn}(x) = min{f1(x), · · · , fn(x)} .

Theorem (7)
Let f1, · · · , fn : E −→ R be measurable functions. Then the functions max{f1, · · · , fn} and
min{f1, · · · , fn} are also measurable.



Proof.
Let c ∈ R. We have

{max{f1, · · · , fn} > c} =
n⋃

j=1

{fj > c} and {min{f1, · · · , fn} > c} =
n⋂

j=1

{fj > c} .

Thus {max{f1, · · · , fn} > c} is measurable as a finite union of measurable sets and {min{f1, · · · , fn} > c} is

measurable as a finite intersection of measurable sets.

For a function f : E −→ R we associate the functions:

|f | = max{f ,−f} , f+ = max{f , 0} , and f− = max{−f , 0}.

Note that
f = f+ − f−

a difference of two nonnegative functions. Also |f | = f+ + f−.


