## Real Analysis MAA 6616 <br> Lecture 9 <br> Lebesgue Measurable Functions

## Definition and Properties of Measurable Functions

All functions considered here will be $\overline{\mathbb{R}}$-valued, where $\overline{\mathbb{R}}$ is the extended real line $\mathbb{R} \cup\{ \pm \infty\}=[-\infty, \infty]$. For a function $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$, we will use the following abbreviation $\{f<c\}$ for $\{x \in E: f(x)<c\}$ where $c \in \overline{\mathbb{R}}$. Similar abbreviations will be used for $\{f>c\},\{f \geq c\},\{f \leq c\}$, and $\{f=c\}$.

## Proposition (1)

Let $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$. Then the following properties are equivalent:

1. For every $c \in \overline{\mathbb{R}},\{f>c\}$ is measurable;
2. For every $c \in \mathbb{\mathbb { R }},\{f \geq c\}$ is measurable;
3. For every $c \in \overline{\mathbb{R}},\{f<c\}$ is measurable;
4. For every $c \in \overline{\mathbb{R}},\{f \leq c\}$ is measurable.

Moreover, each one of these properties implies that $\{f=c\}$ is measurable.

## Proof.

This proposition follows from the fact that the collection $\mathcal{M}$ of measurable sets is a $\sigma$-algebra: $(1) \Longleftrightarrow$ (4) and
(2) $\Longleftrightarrow(3)$ follow from $\{f \leq c\}=\overline{\mathbb{R}} \backslash\{f>c\}$ and $\{f \geq c\}=\overline{\mathbb{R}} \backslash\{f<c\}$; (1) $\Longrightarrow$ (2) and (2) $\Longrightarrow$ (1) follow from $\{f \geq c\}=\bigcap_{n=1}^{\infty}\left\{f>c-\frac{1}{n}\right\}$ and $\{f>c\}=\bigcup_{n=1}^{\infty}\left\{f \geq c+\frac{1}{n}\right\}$.
Now assume that anyone of the four property holds (and so all four hold). Let $c \in \mathbb{R}$. Then $\{f=c\}=\{f \geq c\} \cap\{f \leq c\}$ is measurable. Also $\{f=-\infty\}=\bigcap_{n=1}^{\infty}\{f<-n\}$ and $\{f=\infty\}=\bigcap_{n=1}^{\infty}\{f>n\}$ are measurable.

A function $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$ defined on the measurable set $E$ is said to be Lebesgue measurable if it satisfies any one of the properties of Proposition 1.

## Theorem (2)

Let $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$ with $E$ measurable. Then $f$ is measurable if and only if for every open set $U \subset \mathbb{R}$, the pre-image $f^{-1}(U)=\{x \in E: f(x) \in U\}$ is a measurable set in $\mathbb{R}^{p}$.

## Proof.

$" \Longleftarrow "$ Suppose that for every open set $U \subset \mathbb{R}, f^{-1}(U)$ is measurable. Let $c \in \mathbb{R}$. Since $(c, \infty) \subset \mathbb{R}$ is open, then $\{f>c\}$ is measurable, then $f$ is measurable.
$" \Longrightarrow$ " Suppose that $f$ is measurable (and so it satisfies all four properties of Proposition 1). Let $U \subset \mathbb{R}$ be an open set. Then there is a countable collection of open and bounded intervals $\left\{I_{j}\right\}_{j \in \mathbb{N}}=\left\{\left(a_{j}, b_{j}\right)\right\}_{j \in \mathbb{N}}$ such that $U=\bigcup_{j \in \mathbb{N}}$. Note that $I_{j}=\left(a_{j}, \infty\right) \cap\left(-\infty, b_{j}\right)$ so that $f^{-1}\left(I_{j}\right)=\left\{f<b_{j}\right\} \cap\left\{f>a_{j}\right\}$ and $f^{-1}\left(I_{j}\right)$ is measurable. Therefore $f^{-1}(U)=\bigcup_{j=1}^{\infty} f^{-1}\left(I_{j}\right)$ is measurable as a countable union of measurable sets.

## Theorem (3)

Let $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$ be a continuous function and $E$ measurable. Then $f$ is measurable

## Proof.

Let $U \subset \mathbb{R}$ be an open set. It suffices to show that $f^{-1}(U)$ is measurable (Theorem 2). Since $f$ is continuous, then there exists an open set $V \subset \mathbb{R}^{p}$ such that $f^{-1}(U)=E \cap V$. Both $E$ and $V$ are measurable and so is their intersection $f^{-1}(U)$

Recall that a property ( $\mathcal{P}$ ) is said to hold almost everywhere (abbreviated a.e) in a set $E$ if there exists a set $Z \subset E$ of measure zero such that $(\mathcal{P})$ holds for every point $x \in E \backslash Z$.

## Theorem (4)

Let $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$ defined on the measurable set $E$.

1. Suppose that $f$ is measurable Let $g: E \longrightarrow \overline{\mathbb{R}}$. If $g=f$ a.e. on $E$, then $g$ is measurable and for every $c \in \mathbb{R}, m(\{g>c\})=m(\{f>c\})$
2. The function $f$ is measurable on $E$ if and only if for every measurable set $A \subset E$ the restrictions $f_{A}$ and $f_{E \backslash A}$ of $f$ to $A$ and to $E \backslash A$ are measurable.

## Proof.

1. Let $Z=\{x \in E: g(x) \neq f(x)\}$ then $m(Z)=0$. Let $c \in \mathbb{R}$ We need to show that $\{g>c\}$ is measurable. We have

$$
\{g>c\}=\{x \in Z: g(x)>c\} \cup\{x \in E \backslash Z: f(x)>c\}=\{x \in Z: g(x)>c\} \cup(\{f>c\} \cap(E \backslash Z))
$$

The set $\{g>c\}$ is measurable as an intersection of three measurable sets. Note that since $\{f>c\}=\{x \in E \backslash Z: f(x)>c\} \cup\{x \in Z: f(x)>c\}$ and $m(Z)=0$, then $m(\{f>c\})=m(\{x \in E \backslash Z: f(x)>c\})$. As a consequence we have $m(\{g>c\})=m(\{f>c\})$.
2. Let $A \subset E$ measurable and $c \in \mathbb{R}$. We have

$$
\{f>c\}=\left\{f_{A}>c\right\} \cup\left\{f_{E \backslash A}>c\right\}=(\{f>c\} \cap A) \cup(\{f>c\} \cap(E \backslash A)) .
$$

It follows immediately that $f$ is measurable if both $f_{A}$ and $f_{E \backslash A}$ are measurable.

## Theorem (5)

Let $f: E \subset \mathbb{R}^{p} \longrightarrow \overline{\mathbb{R}}$ be finite a.e. in $E$ and let $\alpha: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Assume that $f$ is measurable. Then the composition $\alpha \circ f$ is measurable.

## Proof.

Let $Z=\{f= \pm \infty\}$. Then $Z$ has measure zero. Set $h=\alpha \circ f$ so that $h$ is well defined on $E \backslash Z$ by $h(x)=\alpha(f(x))$. Let $U \subset \mathbb{R}$ be an open set. We need to verify that $h^{-1}(U)=f^{-1}\left(\alpha^{-1}(U)\right) \cap(E \backslash Z)$ is measurable. Since $\alpha$ is continuous, then $\alpha^{-1}(U)$ is open. Therefore, $f^{-1}\left(\alpha^{-1}(U)\right)$ is measurable and so is $h^{-1}(U)$.

## Remark (1)

It follows from Theorem 5 that if $f$ is measurable, then so are the functions $|f|, f^{2},|f|^{q}$ for $q>0, \mathrm{e}^{\lambda f}$ etc.

Let $E \subset \mathbb{R}^{p}$. The characteristic function of $E$ is the function

$$
\chi_{E}: \mathbb{R}^{p} \longrightarrow \mathbb{R} ; \quad \chi_{E}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in E \\
0 & \text { if } x \notin E
\end{array} .\right.
$$

It follows directly from the definition of measurable functions that $\chi_{E}$ is measurable if and only if $E$ is measurable.

## Remark (2)

Composition of measurable functions is not necessarily measurable. Consider the $\psi(x)=x+\phi(x)$ where $\phi$ is the Cantor-Lebesgue function. We know that $\psi$ is a homeomorphism between [0, 1] and [0, 2] and that there exists a set $S \subset C$ such $\psi(S)$ is not measurable (where $C$ is the Cantor set). We can extend $\psi$ as a global homeomorphism $\Psi: \mathbb{R} \longrightarrow \mathbb{R}$ (for example $\Psi(x)=2 x$ for $x<0$ and for $x>1$ ). Hence $\Psi^{-1}$ is continuous. Then the composition $h=\chi_{S} \circ \Psi^{-1}$ is not measurable. Indeed, $\{h=1\}=\Psi\left(\chi_{S}(1)\right)=\psi(S)$ is not measurable.

## Remark (3)

Given a function $h$, its measurability is not affected if the values are changed on a set of measure zero. With this understanding, the sum $f+g$ of two functions valued on $[-\infty, \infty]$ is well defined provided that the set of indeterminacy where $f(x)=\infty$ and $g(x)=-\infty$ has measure zero. Similarly for the product $f g$ when the product takes the form $0 \cdot \infty$.

## Theorem (6)

Let $f, g: E \longrightarrow \overline{\mathbb{R}}$ be measurable functions that are finite a.e. in $E$. Then

1. The sum $f+g$ and difference $f-g$ are measurable.
2. The product fg is measurable.
3. The quotient $f / g$ is measurable provided that $g \neq 0$ a.e. in $E$.

## Proof.

1. First observe that the set $\{f>g\}=\{x \in E: f(x)>g(x)\}$ is measurable. Indeed it can be written as a countable union of measurable sets: $\{f>g\}=\cup_{r \in \mathbb{Q}}(\{f>r\} \cap\{g<r\})$. Next, for any $\lambda \in \mathbb{R}$, the function $f+\lambda$ or $-f+\lambda$ is measurable since $\{f+\lambda>c\}=\{f>c-\lambda\}$ is measurable. Now to prove that $f+g$ is measurable, let $c \in \mathbb{R}$, then $\{f+g>c\}=\{f>c-g\}$ is measurable by the above observations.
2. We have $4 f g=(f+g)^{2}-(f-g)^{2}$. It follows from part 1 that $f \pm g$ are measurable and so $(f \pm g)^{2}$ are also measurable (Theorem 4). Consequently, $f g$ is measurable.
3. Since up to a set of measure zero, we have $\{(1 / g)>c\}=\{g<(1 / c)\}$, the measurability of $g$ implies that of $1 / g$ and so of the quotient $f / g$ (part 2)

Let $f_{1}, \cdots, f_{n}$ be functions defined on the same domain $E \subset \mathbb{R}^{p}$. Define the functions $\max \left\{f_{1}, \cdots, f_{n}\right\}$ and $\min \left\{f_{1}, \cdots, f_{n}\right\}$ in $E$ by

$$
\begin{aligned}
& \max \left\{f_{1}, \cdots, f_{n}\right\}(x)=\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\} \text { and } \\
& \min \left\{f_{1}, \cdots, f_{n}\right\}(x)=\min \left\{f_{1}(x), \cdots, f_{n}(x)\right\} .
\end{aligned}
$$

## Theorem (7)

Let $f_{1}, \cdots, f_{n}: E \longrightarrow \overline{\mathbb{R}}$ be measurable functions. Then the functions $\max \left\{f_{1}, \cdots, f_{n}\right\}$ and $\min \left\{f_{1}, \cdots, f_{n}\right\}$ are also measurable.

## Proof.

Let $c \in \mathbb{R}$. We have

$$
\left\{\max \left\{f_{1}, \cdots, f_{n}\right\}>c\right\}=\bigcup_{j=1}^{n}\left\{f_{j}>c\right\} \text { and }\left\{\min \left\{f_{1}, \cdots, f_{n}\right\}>c\right\}=\bigcap_{j=1}^{n}\left\{f_{j}>c\right\} .
$$

Thus $\left\{\max \left\{f_{1}, \cdots, f_{n}\right\}>c\right\}$ is measurable as a finite union of measurable sets and $\left\{\min \left\{f_{1}, \cdots, f_{n}\right\}>c\right\}$ is measurable as a finite intersection of measurable sets.
For a function $f: E \longrightarrow \overline{\mathbb{R}}$ we associate the functions:

$$
|f|=\max \{f,-f\}, f^{+}=\max \{f, 0\}, \text { and } f^{-}=\max \{-f, 0\} .
$$

Note that

$$
f=f^{+}-f^{-}
$$

a difference of two nonnegative functions. Also $|f|=f^{+}+f^{-}$.

