
THE HEAT EQUATION

The main equations that we will be dealing with are the heat equation, the wave
equation, and the potential equation. We use simple physical principles to show how
these equations are derived. We start the discussion with the heat equation

1. Heat Conduction

Our aim is to construct a mathematical model that describes temperature dis-
tribution in a body via heat conduction. There are other forms of heat transfer
such as convection and radiation that will not be considered here. Basically, heat
conduction in a body is the exchange of heat from regions of higher temperatures
into regions with lower temperatures. This exchange is done by a transfer of kinetic
energy through molecular or atomic vibrations. The transfer does not occur at the
same rate for all materials. The rate of transfer is high for some materials and low
for others. This thermal diffusivity depends mainly on the atomic structure of the
material.

To interpret this mathematically, we first need to recall the notion of flux (that
you might have seen in multivariable calculus). Suppose that a certain physical
quantity Q flows in a certain region of the 3-dimensional space R3. For example Q
could represent a mass (think of flowing water), or could represent energy (think of
heat), or an electric charge. The flux corresponding to Q is a vector-valued function
q⃗ whose direction indicates the direction of flow of Q and whose magnitude |q⃗| the
rate of change of Q per unit of area per unit of time. If for example Q measures
gallons of water, then the units for the flux could be gallons per meter2 per minute.

One way to understand the relationship between Q and q⃗ is a as follows. Let
m0 = (x0, y0, z0) be a point in R3 with the standard canonical basis of orthonormal

vectors i⃗, j⃗, k⃗. Consider a small rectangular surface S1 centered at m0 and parallel
to the yz-plane. So the unit vector i⃗ is normal to S1. Assume that S1 has side
lengths ∆z and ∆y (see Figure 1.)

Figure 1. Rectangular surface S1, normal to the unit vector i⃗ and
with vertices (y, z), (y+∆y, z), (y+∆y, z+∆z), and (y, z+∆z).

Let ∆Q denotes the net amount of the quantity Q that has crossed S1 during
the interval of time from t0 to t0 +∆t (so ∆Q > 0 if Q crosses S1 in the direction

Date: January 3, 2016.

1



2 THE HEAT EQUATION

of i⃗ and ∆Q < 0 if Q crosses S1 in the direction −⃗i.) Define

q1(x0, y0, z0, t0) = lim
∆z → 0
∆y → 0
∆t → 0

∆Q

∆y∆z∆t
.

Thus q1 denotes the rate per unit of area per unit of time at the point m0 at time
t0 at which Q crosses S1 along the vector i⃗.

We can repeat the above construction for a vertical surface S2 parallel to the xz-
plane and centered at m0 (thus normal to j⃗) and for a horizontal surface S3 (normal

to k⃗). We obtain in this way the rates q2(x0, y0, z0, t0) and q3(x0, y0, z0, t0). Set

q⃗(m0, t0) = q1(m0, t0)⃗i+ q2(m0, t0)⃗j + q3(m0, t0)k⃗.

Now, we redo the same construction at each point m of the region and for each
time t under consideration. This gives the vector-valued function q⃗(m, t). This is
the flux of Q. For each time t, q⃗ is a vector field in a region of R3 (if Q flows in R2,
then its flux would be valued in R2).

Note that if S is a surface containing a point m and has unit normal vector n⃗
at m, then the dot product q⃗(m, t) · n⃗ denotes the rate of change of Q, per unit
surface per unit of time, along the normal n⃗. The amount of Q that has crossed a
small portion with area ∆S of S centered at m during an interval of time from t to
t+∆t is approximately

∆Q ≈ (q⃗(m, t0) · n⃗)∆S∆t.

Now some basics about heat transfer. As mentioned above, heat (a form of
energy) can be viewed as a flowing quantity moving from regions of higher tem-
peratures to regions of lower temperatures. This transfer is done according to the
following:

• A change in the amount of heat in a body results in a change of its tem-
perature;

• The heat flux is related to the gradient of the temperature; and
• The principle of energy conservation applies

In more details, the first point means that a change ∆Q in the amount of heat
in a body of mass m results in a change ∆u of its temperature. Furthermore, ∆Q
is proportion al to the product m∆u. Hence, there is a constant c (that depends
on the material structure of the body) such that

∆Q = cm∆u.

The constant c is called the specific heat of the material. It measures the amount of
heat that is needed to raise the temperature of one unit of material by one degree.
The units of c are

[c] = (Energy)/(Mass)(Degree)=Joules/Kg.0K (in MKS System)

The second point relates the heat flux q⃗ to the temperature gradient
−−−→
gradu. It

states that the heat flux is proportional to the temperature gradient. This law was
discovered by J. Fourier in the 19th Century. So, if q⃗(x, y, z, t) and u(x, y, z, t) are,
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respectively, the heat flux and the temperature at a point (x, y, z) at time t, then
there a positive real number K so that

q⃗ = −K
−−−→
gradu = −K(

∂u

∂x
i⃗+

∂u

∂y
j⃗ +

∂u

∂z
k⃗).

The constant K depends on the material of the body and is called the thermal
conductivity. The presence of the minus (-) sign can be explained as follows. The

direction of
−−−→
gradu indicates the direction along which u increases most rapidly,

while −
−−−→
gradu indicates the direction in which u decreases most rapidly which must

be the direction of the flow of heat. The units of K are

[K] = (Energy/(Area)(Time))/(Degree/Length)) = Joules/m.s.0K

The third point (conservation of energy) means that the change in the amount
of heat ∆Q during an interval of time of length ∆t is equal to the amount of heat
that has flown into the body minus the amount of heat that has flown out of the
body during the interval of time.

∆Q = Q(t+∆t)−Q(t) = (Amount INTO)-(Amount OUT)

After dividing by ∆t and letting ∆t → 0, we can express the above relation in
terms of rates

dQ

dt
(t) = (Rate INTO)(t)− (Rate OUT)(t).

2. The One Dimensional Heat Equation

Now we are ready to consider the problem of modeling the temperature distri-
bution in a uniform thin rod of length L made of homogeneous material and with
a constant cross section with area A.

0 
L 

Lateral 
Insulation 

Figure 2. Thin rod with lateral insulation

We assume that the lateral surface of the rod is perfectly insulated. This means
that there is NO heat transfer across the lateral surface of the rod. Thus heat flows
only in the direction of the axis of the rod and there is no heat flow in any direction
perpendicular to the axis of the rod. The temperature function u in the rod, at a
given time t, is therefore the same at each point of a given cross section. But the
temperature varies from one cross section to another. If the rod is set along the
x-axis from 0 to L, then the temperature function depends on x with 0 ≤ x ≤ L
and on time t:

u = u(x, t) 0 ≤ x ≤ L t ≥ 0.
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The basic question is to understand how u varies with x and t.
We consider a small element of the rod between the cross sections at x and x+∆x

as in the Figure 3.

Flow In Flow Out 

Figure 3. A thin element of the rod between x and x+∆x

To fix ideas, we assume that the left end of the element, at x, is warmer than
the right end at x + ∆x. The heat, then flows from left to right in the element.
The heat flux q⃗ depends only x and t, is parallel to i⃗ (and so has no components

along j⃗ and k⃗):

q⃗(x, t) = q(x, t)⃗i.

Then the rate at time t of heat flowing

• into the element is: q(x, t)A;
• out of the element is q(x+∆x, t)A

Let Q(x,∆x, t) denotes the amount of heat in the element at time t. The principle
of conservation of energy applied to the element is therefore

dQ

dt
(x,∆x, t) = Aq(x, t)−Aq(x+∆x, t) = −A(q(x+∆x, t)− q(x, t)).

The law of thermodynamics (point 1) applied to the element of the rod is expressed
as

Q(x,∆x, t) ≈ c(∆m)u(x, t) ,

where c is the specific heat of the rod and ∆m is the mass of the element. We have
used ”≈” instead of ”=” because we made the assumption that u is approximately
the same at each point of the element when ∆x is small. Let ρ be the mass density
of the rod (that we are assuming to be constant throughout the rod). Then

∆m = Volume ·Density = ρA∆x.

The principle of conservation of energy can be rewritten as

cρA∆x
∂u

∂t
≈ −A(q(x+∆x, t)− q(x, t)).

Divide by A∆x to obtain

cρ
∂u

∂t
≈ −q(x+∆x, t)− q(x, t)

∆x
.

These approximations become better and better as ∆x becomes smaller and smaller
and at the limit (∆x → 0), we obtain

cρ
∂u

∂t
(x, t) = − ∂q

∂x
(x, t).
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Now we apply Fourier’s law (second point) to the element. It reads

q(x, t) = −K
∂u

∂x
(x, t) ,

where K is the thermal conductivity of the rod (assumed to be constant). The
above equation, take the form

cρ
∂u

∂t
(x, t) = − ∂

∂x

(
−K

∂u

∂x

)
(x, t) ,

or simply

(1)
∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t) ,

where we have set k = K/cρ. Equation (1) is a partial differential equation, or
simply PDE for short. This particular PDE is known as the one-dimensional heat
equation. The constant k is the thermal diffusivity of the rod. The dimension of k
is

[k] = Area/Time.

The higher the value of k is, the faster the material conducts heat.

3. The Two-Dimensional Heat Equation

Consider a thin homogeneous flat plate with a constant thickness h. Assume that
the faces of the plate are perfectly insulated so that NO heat flows in the direction
transversal to the plate. Hence heat is allowed to flow only in the directions of
the plane of the plate. Suppose that the plate sits in the (x, y)-plane and denote
its temperature function by u. Our assumption on the faces being insulated imply
that u depends only on the location (x, y) and on time t:

u = u(x, y, t).

We are going to repeat the previous arguments to derive an equation for heat
propagation in the plate. For this, consider a small rectangular element of the plate
with vertices (x, y), (x + ∆x, y), (x + ∆x, y + ∆y), and (x, y + ∆y). To fix ideas
suppose that at time t, the bottom side of the rectangle is warmer than the top
side and that the right side is warmer than the left side.

Vertical heat flow 

Vertical heat flow 

Horizontal
heat flow 

Horizontal
heat flow 

Figure 4. A small rectangular element of the plate
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The amount of heat, at time t, in the small rectangle is

Q(x, y,∆x,∆y, t) ≈ c(∆m)u(x, y, t)

where c is the specific heat and ∆m is the mass of the rectangle. If ρ denotes the
mass density, then ∆m = ρh∆x∆y. The rate of change of Q with respect to time
is therefore

(2)
dQ

dt
≈ chρ∆x∆y

∂u

∂t
.

Now we apply the principle of conservation of energy in the rectangle:

dQ

dt
= [Rate into] - [Rate out].

The heat flux q⃗ has two components a horizontal component q1 and a vertical
component q2:

q⃗(x, y, t) = q1(x, y, t)⃗i+ q2(x, y, t)⃗j.

In the figure we have q1 < 0 and q2 > 0. The rates of heat that flow into the
rectangle through the vertical side (at x + ∆x) and horizontal side (at y) are ap-
proximately

−q1(x+∆x, y, t)h∆y and q2(x, y, t)h∆x

(remember that h is the thickness of the plate). The rates of heat that flow out are
approximately

−q1(x, y, t)h∆y and q2(x, y +∆y, t)h∆x.

It follows that the principle of conservation of energy can be expressed as

dQ

dt
= −h∆y[q1(x+∆x, y, t)− q1(x, y, t)]− h∆x[q2(x, y +∆y, t)− q2(x, y, t)].

We replace dQ/dt by its expression given in (2), and after dividing by h∆x∆y, we
obtain

cρ
∂u

∂t
(x, t) ≈ −

[
q1(x+ δx, y, t)− q1(x, y, t)

∆x
+

q2(x, y +∆y, t)− q2(x, y, t)

∆y

]
.

Again these approximations become better and better as ∆x and ∆y become smaller
and smaller. At the limit, we obtain

(3) cρ
∂u

∂t
(x, t) = −

(
∂q1
∂x

(x, y, t) +
∂q2
∂y

(x, y, t)

)
.

Now Fourier’s law (q⃗ = −K
−−−−−→
grad(u)) implies that

q1(x, y, t) = −K
∂u

∂x
(x, y, t) and q2(x, y, t) = −K

∂u

∂y
(x, y, t).

Therefore
∂q1
∂x

= −K
∂2u

∂x2
and

∂q2
∂y

= −K
∂2u

∂y2

(we are assuming that the conductivity K is constant). With these relation, ex-
pression (3) takes the form

(4)
∂u

∂t
(x, y, t) = k

(
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

)
where k = K/cρ is the diffusivity. Equation (4) is the two-dimensional heat
equation.
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4. Some Solutions Of The Heat Equation

The heat equation in one, two, or three space dimensions has infinitely many
solutions. For the one dimensional heat equation ut = kuxx, the following functions

u1(x, t) = e−kω2
1t sin(ω1x) and u2(x, t) = e−kω2

2t cos(ω2x),

where ω1 and ω2 are arbitrary real numbers, are solutions (verify this claim as an
exercise). From these solutions, we can built a new solution

v(x, t) = a1u1(x, t) + a2u2(x, t)

(verify that v is indeed a solution of the heat equation).
For the two-dimensional heat equation ut = k∆u, the following functions are

solutions

e−k(ω2
1+ω2

2)t sin(ω1x) sin(ω2y) or e−k(ω2
1+ω2

2)t sin(ω1x) cos(ω2y)

In the above we can change sin into cos and obtain again a solution. We can add
two or more solutions, or multiply a solution by a constant and obtain again a
solution (verify these claims).

5. Remarks

1. Consider a 3-dimensional body in the (x, y, z)-space. Suppose that heat is

allowed to flow within the body in all three directions i⃗, j⃗, and k⃗. Now, the
temperature function u depends effectively on the 3 space variables (x, y, z) and on
time t. The above arguments carry over to establish the following equation

(5)
∂u

∂t
(x, y, z, t) = k

(
∂2u

∂x2
(x, y, z, t) +

∂2u

∂y2
(x, y, z, t) +

∂2u

∂z2
(x, y, z, t)

)
which is the 3-dimensional heat equation.

2. The expression on the right of the heat equation, without the constant k in
front of it, is known as the Laplacian ofu. The Laplace operator, denoted ∆ is

∆ =
∂2

∂x2
in R;

∆ =
∂2

∂x2
+

∂2

∂y2
in R2;

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
in R3

(Note that the Laplace operator ∆ has nothing to do with the previously used
notations ∆x, ∆t and so on that was used to denote a small increments in the
variables x and t). The heat equation has then the form

(6)
∂u

∂t
= k∆u .

3. Throughout the derivation of the heat equation, we have made a number of
assumptions. In particular, we have assumed mass homogeneity of the body (ρ =
constant) and also homogeneity of the conductivity of heat (K = constant). If
these depend on (x, y, z), then the heat equation becomes

cρ
∂u

∂t
=

∂

∂x

(
K

∂u

∂x

)
+

∂

∂y

(
K

∂u

∂y

)
+

∂

∂z

(
K

∂u

∂z

)
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which after simplifications can be put in the form

∂u

∂t
= k∆u+ α

∂u

∂x
+ β

∂u

∂y
+ γ

∂u

∂z

where all the coefficients k, α, β and γ might depend on the variables.

4. We have also assumed that there are no heat sources nor sinks within the
body (a source emits heat and a sink absorbs heat). If there are such regions in the
body, then for a uniform body, the heat equation becomes

∂u

∂t
= k∆u+ F (x, y, z, t)

where the function F accounts for the emission or absorbtion o heat.

6. Boundary Value Problems For The Heat Equation

Now we illustrate some typical boundary value problems (BVP for short) asso-
ciated with the heat equation. We will only set up the problems. Their solvability
has to wait until we develop the necessary tools.

6.1. Example 1. Suppose that a laterally insulated rod of length L has initial
constant temperature of say 500. Then its left end x = 0 is immersed in a tank of
icy water at 00 and its right end x = L is immersed in a tank of boiling water at
1000. We would like to set up a problem for the temperature function that would
eventually enable us to find its (unique) solution

00 1000
Rod with insulation 

Tank of
Icy Water 

Tank of 
Boiling Water 

Heat Flow 

Figure 5. A laterally insulated rod connecting two tanks with dif-
ferent temperatures

Let u(x, t) be the temperature at time t of the cross section through x of the
rod. We know that u satisfies the PDE ut = kuxx, where k is the diffusivity of the
rod. This equation has infinitely many solutions and by itself will not determine
the (unique) solution of our specific problem. More information is needed. For
this, we use the initial temperature distribution of the rod. That is for t = 0,
the temperature in the rod is everywhere 500: u(x, 0) = 50 for every cross section
through x. By immersing the ends in the (large) tanks, we are imposing that the
ends of the rod have the the same temperature as those of the waters in the tanks.
That is u(0, t) = 0 and u(L, t) = 100 for all time t > 0. All of this can be written
formally as the following BVP

ut(x, t) = kuxx(x, t) for 0 < x < L, t > 0;
u(x, 0) = 50 for 0 < x < L;
u(0, t) = 0 for t > 0;
u(L, t) = 100 for t > 0;
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6.2. Example 2. Suppose that the rod in the previous example has an initial
temperature (at time t = 0) given by a certain function f(x) (for example f(x)
could be x2 − 3 sin(x)). This time instead of immersing the ends, in the tanks, we
insulate the ends of the rod. Hence, there no heat exchange between the rod and
the outside. In particular, there is no heat flow through the ends. The heat flux

Figure 6. A rod with a complete insulation

q⃗ is 0 at x = 0 and at x = L for each time t > 0. Remember that the heat flux
is proportional to the temperature gradient (here ux since there is only one space
variable). Thus insulating the ends implies that ux(0, t) = 0 and ux(L, t) = 0. The
BVP is therefore

ut(x, t) = kuxx(x, t) 0 < x < L, t > 0;
u(x, 0) = f(x) 0 < x < L;
ux(0, t) = 0 t > 0;
ux(L, t) = 0 t > 0.

Remark 1. We expect that the heat trapped inside the rod will distribute itself
evenly throughout the rod until the temperature u(x, t) approaches a constant value
(the average of f) as t gets larger and larger.

6.3. Example 3. (A combination of the above situations). Suppose that the left
end of the rod is insulated while the right end is immersed in the the tank of boiling
water. Assume that the initial temperature of the rod is given by the function f(x).
The BVP is the following

1000

Tank of Boiling 
Water 

Figure 7. A rod with one end insulated and the other kept at a
constant temperature

ut(x, t) = kuxx(x, t) 0 < x < L, t > 0;
u(x, 0) = f(x) 0 < x < L;
ux(0, t) = 0 t > 0;
u(L, t) = 100 t > 0;

Remark 2. Other types of boundary conditions are possible. For example, if the
end x = 0 has poor insulation, then the corresponding boundary condition might
take the form

ux(0, t) + au(0, t) = 0 t > 0
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where a is a constant.

6.4. Example 4. Consider a thin plate in the shape of a quarter of a disk of radius
R, whose faces (top and bottom) are insulated. Suppose that (ı) initially (at time
t = 0), the temperature distribution is given by the function f(x, y); (ıı) one radial
edge is kept at constant temperature 0 while the other radial edge is insulated for
all t > 0; and (ııı) the circular edge is kept at 1000.

Insulating the vertical edge means that there is no heat exchange between the
plate and the outside through the vertical side. This implies that the i⃗-th com-
ponent of the heat flux q⃗ is 0 on the vertical edge. In terms of the temperature,
it means ux = 0 on the vertical edge. Thus the temperature function u(x, y, t)
satisfies the following

• the two-dimensional heat equation ut = ∆u;
• initial temperature u(x, y, 0) = f(x, y);
• horizontal side u(x, 0, t) = 0;
• vertical side ux(0, y, t) = 0;
• circular side u(x, y, t) = 100.

x 

y Temperature kept
at 100 degrees 

Temperature kept 
at 0 degrees 

This side 
insulated 

Figure 8. The circular and horizontal sides of the plate are kept
at constant temperature while the vertical side is insulated

The BVP is then

ut(x, y, t) = k∆u(x, y, t) x2 + y2 < R2, x > 0, y > 0, t > 0;
u(x, y, 0) = f(x, y) x2 + y2 < R2 x > 0, y > 0;
u(x, 0, t) = 0 0 < x < R, t > 0;
u(x, y, t) = 100 x2 + y2 = R2, x > 0, y > 0, t > 0;
ux(0, y, t) = 0 0 < y < R, t > 0.

Note that it is more appropriate to set this problem in polar coordinates rather
than in rectangular coordinates.

6.5. Example 5. If instead of having the vertical side insulated, it is the circular
side that is insulated, then there will not be heat exchange across the circular side.
This means that the heat flux q⃗ is perpendicular to the unit normal n⃗ to the circular
side at each point of the circle. Thus q⃗ · n⃗ = 0. In terms of the temperature u.

It means that its normal derivative
∂u

∂n⃗
= 0 on the circle. Recall that the normal

derivative is
∂u

∂n⃗
= grad(u) · n⃗.
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7. Exercises

In exercises 1 to 5, write the BVP for the temperature u(x, t) in a homogeneous
and laterally insulated rod of length L and diffusivity k in the following cases.

Exercise 1. The left end and right end are kept at temperature 0 degrees, the
initial temperature at slice x is x degrees, k = 1, and L = 20.

Exercise 2. The left end is kept at temperature 10 degrees, the right end at
temperature 50 degrees, the initial temperature at any slice x is 100 degrees, k = 2,
L = 50.

Exercise 3. The left end is insulated, the right end at temperature 50 degrees, the
initial temperature at any slice x is x2 degrees, k = 1/2, L = 50.

Exercise 4. Both ends are insulated, the initial temperature at slice x is 100
degrees, k = 1, L = 20.

Exercise 5. The left end is controlled so that at time t, the temperature is 100 cos t
degrees, the right end is insulated, the initial temperature is 50 degrees, k = 1,
L = 20.

Exercise 6. Consider two identical, laterally insulated, uniform rods with diffusiv-
ity k and length L. These two rods are joined together to form a new rod of length
2L ( the right end of rod 1 is joined to the left end of rod 2 as in the figure). Suppose

Tank with water
at temperature
150 degrees 

Insulation 

Rod 1 Rod 2 

Joined ends 

Figure 9. Two rods joined to form a single rod

that at time t = 0 (just the moment when the rods are joined), the temperature of
rod 1 is 0 degrees, that of rod 2 is 100 degrees, the right end of rod 2 in insulated
and the left end of rod 1 is immersed in a tank with temperature of 150 degrees.
Write the BVP for the temperature of the new rod of length 2L.

Exercise 7. This time consider three identical, laterally insulated, uniform rods
with diffusivity k and length L. These three rods are joined together to form a new
rod of length 3L ( the right end of rod 1 is joined to the left end of rod 2, and the
right end of rod 2 is joined to the left end of rod 3 as in the figure). Suppose that

Rod 1 Rod 2 Rod 3 

Insulation 
Kept at temperature
of 100 degrees

Figure 10. Three rods joined to form a single rod

the left end of rod 1 is insulated, the right end of rod 3 is kept at temperature of
100 degrees. Suppose that initially, the temperature in rod is 100 degrees, that in
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rod 2 is given by 100x(1 − x/L) (here x is the distance from the left end of rod 2
to the cross section), and the temperature in rod 3 is 0 degrees.

Exercise 8. The temperature function in a laterally insulated rod made of copper
is found (say experimentally) to be e−0.046t cos(0.2x). Find the thermal diffusivity
k of copper.

Exercise 9. Verify that the function

u(x, t) = e−π2t/50 sin
πx

10
− 5e−4π2t/50 sin

2πx

10
is a solution of the BVP

ut = 2uxx 0 < x < 10, t > 0
u(0, t) = u(10, t) = 0 t > 0

u(x, 0) = sin
πx

10
− 5 sin

2πx

10
0 < x < 10.

If there is heat radiation within the rod of length L, then the 1-dimensional heat
equation might take the form

ut = kuxx + F (x, t).

Exercise 10 to 13 deal with the steady-state situation. This means that the tem-
perature u and F are independent on time t. In particular, ut ≡ 0. The above heat
equation becomes just an ordinary differential equation that you have learned how
to solve in the first Differential Equation course (MAP3102).

Exercise 10. Find u(x) if F = 0 (no radiation), k = 3, u(0) = 2, u(L) = 10.

Exercise 11. Find u(x) if F = 0 (no radiation), k = 1, u(0) = 2, u′(L) = 2.

Exercise 12. Find u(x) if F (x) = x, k = 1, u(0) = 0, u(L) = 0.

Exercise 13. Find u(x) if F (x) = sinx, k = 2, u(0) = u′(0), u(L) = 1.

Exercises 13 to 17, deal with the temperature u(x, y, t) in a homogeneous and
thin plate. We assume that the top and bottom of the plate are insulated and the
material has diffusivity k. Write the BVP in the following cases.
Exercise 13. The plate is a square with side length 1 with k = 1. The horizontal
sides are kept at temperature 0 degrees, the vertical sides at temperature 100 de-
grees. The initial temperature in the plate is 50 degrees (constant throughout the
plate).

Exercise 14. The plate is a 1 × 2 rectangle with k = 2. The vertical left side
and the top horizontal sides are insulated. The vertical right and the horizontal
bottom sides are kept at temperatures 0 and 100 degrees, respectively. The initial
temperature distribution in the plate is f(x, y) = sinx cos y.

Exercise 15. The plate is triangular as in the figure. The vertical side is kept
at temperature 0 degrees, the horizontal side at 50 degrees, and the slanted side is
insulated. The initial temperature is 100 degrees throughout.
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Figure 11. Triangular plate

Exercise 16. The plate is triangular as in the figure. The vertical side is kept at
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Figure 12. Triangular plate

temperature 20 degrees, the slanted sides are insulated and the initial temperature
is given by the function xy.

Exercise 17. The plate is an angular segment of a circular ring as in the figure
(the angle is π/4). The sides are kept as indicated in the figure and the initial

Insulation 
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0 Degrees 100 Degrees 

Figure 13. Angular segment of a ring

temperature in polar coordinates is f(r, θ) = r2 sin(4θ).


