NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS
AND PROBLEMS IN HIGHER DIMENSIONS

We illustrate how eigenfunctions expansions can be used to solve more gen-
eral boundary value problems. These include some nonhomogeneous problems and
problems in higher dimensions.

1. A HEAT PROPAGATION PROBLEM

Consider the problem
Ut = Ugy + F(2,1) O<z<L,t>0

U(O,t):Tl t>0
U(L7t):T2 t>0
u(z,0) = f(x) 0<z<L

This problem models heat propagation in a rod where the left end is kept at constant
temperature 77, the right end is kept at temperature T5, the initial temperature
is f(z) and at each point z, there is heat radiating at the rate F(x,t) at time
t. Note that the PDE, the boundary conditions, and the initial condition, are
nonhomogeneous.

We can use the principle of superposition to decompose this problem into two
subproblems The subproblems for v and w are

u=T, u=T, v=T v=T w=0 w=0

Wtzwxx+F(x,t)

ut=uXX+F(x,t) - VEV, "
u=f(x) V=1(X) w=0
Vi = Vg Wy = Wy + F(z, 1)
v(0,t) =T} w(0,¢) =0
oLty =1 M w(@,) =0
v(z,0) = f(z) w(z,0) =

The solution of the original problem is
u(z,t) = v(z,t) + w(z,t).
We solve separately, the v and the w problems.

The v-problem. To find the solution v, we can use the following steps:
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First, find the steady-state temperature s(x) (independent on t) so that s(0) =
Ty, s(L) = Ty and s”(z) = 0. The function s is easily found

5( ) (T27T1)L+T1

Second, write a BVP for the function y(z,t) = v(z,t) — s(z) (assuming that v
solves the v-problem). We have

1
yt:vt_ozvt and yzx:vzz_s(x)zvxm~

Hence y(x,t) satisfies the heat equation y; = y.,. The boundary conditions for y
are

y(O, t) = ’U(O,t) - S(O) = T1 - T1 =0
y(L,t) =v(L,t) —s(L) =To —T» =0
The initial condition for y is
y(x,0) = v(z,0) — s(x) = f(z) — (Tr — Tl)L + 1T
The BVP problem for the function y(z,t) is therefore the familiar problem

Yt =
W00 =0 y(Lt) =0
y(x,0) = f(z) — s(x)
Third, This is a problem that we can solve by using separation of variables. We
find

s 2
= Z Ane "ntsin(v,x) ,

where v, = nw/L and A,, is the n-th Fourier sine coefficient of the f(z) — s(z):

2 nwx

L
A, = Z/o (f(z) — s(x))sin de
Conclude that the solution of the v-problem is
v(x,t) = y(x,t) + s(z) .

The w-problem. We indicate how to use eigenfunction expansion to construct a
formal series solution. The eigenfunctions to be used are those of the associated
SL-problem (in this case X" + AX =0, X(0) = X(L) =0):

sin(vpz), nezt

First, expand the nonhomogeneous term F'(z,t) into a Fourier sine series in x
(the variable ¢ is considered as a parameter). We have,

ZF )sin(vpz), x€ (0, L), t>0,
where the n-th coefficient Fn( ) depends on ¢ and is given by
o L
F.(t) = E/o F(z,t)sin %dm .

Second, write the solution w(z,t), has the Fourier sine series in x given by

nwx
E wy, (t sm—,
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where the Fourier coefficients w,,(t) are function of ¢ to be determined. Find ODEs
for the coefficients w, (t). For this rewrite the PDE

wi(w,1) — wee(z,t) = F(2,1)

by using the Fourier expansions for w and F. We obtain

o0
E w (t) sin(v,x E wy, (¢ TQL)SIH (vnx) E F,(¢t) sin(vyx

oo
[w) (t) + V2w, (t)] sin(v,z Z ) sin(vpx)

et

3
Il
-

After identifying the coefficients of sm(z/nx), we get the first order ODE for wy,
wy, (t) + vawn(t) = Fu(t)

Note that in addition to the ODE, w,, needs to satisfy the initial condition w, (0) = 0
(this results from w(x,0) = 0).

Third, solve the ODE problem for w,,. This problem is of the form y'(¢)+ay(t) =
g(t), y¥(0) = 0. Such an ODE can be solved by the method of variation of constant.
The homogeneous equation 3’ + ay = 0 has general solution y(t) = K exp(—at).
The general solution of the nonhomogeneous equation 3’ + ay = g can be found
by making K a function K(t): y(t) = K(t)exp(—at). The function K (t) satisfies
K'(t) = g(t) exp(at). This together with the initial condition y(0) = 0 implies that

t

K(t) = / g(s)exp(as)ds. The solution y is therefore
0

¢ ¢
y(t) = e_‘”/ e*®g(s)ds = / et g(s)ds .
0 0

Applying this to the coefficient w,,, we find that

t
W (t) = e*vit/ ’n F, (s)ds.
0

By using the expression for F,,, we can also express w,, as

2 -V, t
Wy, ¢ / / & nIF(x, s) sin(v,x)dxds

Example. Consider the BVP
ut:um+100sin2t O<x<m t>0

u(0,t) = 20 t>0
u(m,t) = 100 t>0
u(z,0) =0 O<z<m
The v and w subproblems are
Vg = Uy Wy = Wy + 100sin® ¢
v(0,t) =20, wv(m,t) =100 and w(0,t) =0 w(m,t)=0
v(z,0) =0 w(z,0) =0

The v-problem: First, find the steady-state temperature s(z) with s(0) = 20
and s(m) = 100. We have

s(x) = 877—0:17 +20 .
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Let y(z,t) = v(z,t) — s(z). The problem for y(z,t) is:
Yt = Yz, y(07t) = y(’]nt) =0, y(l", 0) = —S(SE)
We find y by separation of variables and get

y(x,t) = Z Ape 't sin(nz) ,

n=1

where

2 [T 2 (™ /(80

A, = —f/ s(z) sin(nz)dz = —7/ (x + 20) sin(nx)dx

™ Jo ™ Jo ™

Integration by parts gives
1-5(-1)"
A, = f40L .
™

The solution of the v-problem: v(x,t) = s(x) + y(z,t) is
80 40 = 1=5(=1)" _ 2, .
t) = — 20 — — ) et
v(z,t) — + - 321 - e sin(nx)

The w-problem: We expand the nonhomogeneous term 100sin? ¢ in eigenfunc-
tions sin(nz). That is, 100sin?¢ = > n>1 Fa(t)sin(nz). We find

_ 20001 — (—1)")sin? t

F,(t
n() nm
Thus,
. 400sin? ¢
100sin’t =y ————sin(2j + 1)z, € (0, ), t>0.
sin ;(2j+1)7r51n(]+ )z, € (0, m)

We expand the solution w(x,t) = ) -, w,(t)sin(nz). The n-th coefficient wy,(t)
solves the ODE problem -
~200(1 = (—1)™)

L) 4+ nPw, () = —————"Lsin’t n(0) =0.
Wy () +n"wn (1) — sin®t,  wy(0)

200(1 — (=1)" !
wy(t) = 20001 - (=1)") )efnzt/ " ¥ sin? s ds .
0

nm

The solution is

To evaluate the last integral, we use the formula

/eas COS(bS)ds _ eas(a COS(bS) —+ bSlH(bS))

2 + Constant
a

to obtain
t t n?t t
, 1 -1 1
/o e"** sin? s ds 5/0 6"28(1 — cos(2s))ds 22 GQT - 5/0 e’ cos(2s)ds
B ontt 1 . n2 ™" [n? cos(2t) + 2sin(2t)]
~ 2n2 2(n* +4) 2(n* + 4)
Finally, the coefficient wo;(t) = 0 and

Waj41(t) = (

25 + ) a

200 1—e @itD* (25 4 1)2e= D% (25 4 1)2 cos(2t) + 2sin(2t)
(27 +1)? (27 +1)*+4 (27 +1)* +4
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Remark. Note that all the terms containing e~vat converge to zero as t — 00 .
This means that such terms have negligible effect on the solution u. The long term

behavior of the solutions are;

80
v(x,t) =~ —x+ 20,
7r

t) 200 { 1 (2j + 1)% cos(2t) + 2sin(2t)]
AN (25 + )m [ (25 + 1)2 (2 +1)4+4
the long term behavior of w is therefore
o0 . .
200 1 (25 + 1)% cos(2t) + 2sin(2t) ] .
t) =~ — .
v (2 + {(23' +1)2 (2j + 1) +4 sin{nz)

2. FORCED VIBRATIONS OF A STRING

The following boundary value problem models the vibrations of a string with an
external force that depends on time. The endpoints are held fixed and the initial
positions and velocity are zero.

gt + 20U — gy = F(1,t) O<z<L, t>0
(1) u(0,t) =u(L,t) =0 t>0
u(z,0) =0, w(z,0)=0 0O<z<L

where a > 0 is the damping constant. We will assume that
F(z,t) = f(z) cos(wot) .

The eigenfunctions of the X-problem of the associated homogeneous problem are

Xn(z) =sin(vpx), with v, = %, nez’

We expand F(z,t) = f(z) cos(wpt) into a Fourier sine series (¢ is a parameter):

ZF )sin(v,x)

where
F,(t) = B, cos(wot), with B, = / f (@) sin(v,z)dz

We are going to seek a formal series solution u(z,t) in the form

ZC )sin(vpx) .

For each n, we write an ODE problem for the coefficient C,,(t). We have

o0
Z Cl(t)sin(vpx), uy = Z Cll(t)sin(vpx), Upy = — Z v2C, (1) sin(v,x) .
n=1

The PDE for u becomes
Z [CV/(t) + 2aC, (1) + (cvn)?Cyp(t)] sin(vyz) Z F,(t)sin(vpz) .
=1

This means that C,,(t) must satisfy the ODE
C! () + 2aC, (t) + (cvp)?C(t) = Fu(t) = B, cos(wot) .
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The initial conditions u(x,0) = 0 and u;(x,0) = 0 imply that C,,(0) = 0 and
C!(0) = 0. Thus, for each n € Z*, the function C,(#) must be a solution of the
ODE problem

C!(t) + 2aC" (t) + (cvy)?Cy(t) = By, cos(wot), Cn(0) =C’(0)=0.

This problem can be solved by the method of undetermined coefficients (UC-
method). We are going to distinguish two cases depending on whether a = 0
or a > 0.

Forced vibrations without damping (a = 0). In this case the general solution
of the ODE ¢ + (cvy,)%y = 0 is
y(t) = Kj cos(evpt) + Ko sin(cvyt).

To find a particular solution of the nonhomogeneous equation y” + (cvy,)%y =
By, cos(wot), we distinguish two cases: the case when cos(wgt) is not a solution
of the homogeneous equation (wy # cvy,) and the case when cos(wpt) is a solution
of the homogeneous equation (wp = cvy,).

Case wg # cv,: A particular solution of the nonhomogeneous equation can be
found in the form

yp = Pcos(wot) + @sin(wet), P, Q, constants .
The constants P and @ are found to be:
B,
T A
The general solution of the ODE vy + (cvy, )%y = By, cos(wot) is therefore
B,
2

m cos(wot) + K; cos(evpt) + Ko sin(cv,t).

y(t) =

In order for such a function to satisfy y(0) = y’(0) = 0, it is necessary to have
B,
PR

K=
! (cvpn)? — wi

Ky, =0.

Hence, in this case the coeflicient C),(¢) is:
B,

Cn(t) = AL (cos(wot) — cos(cvpt)) .
B+ A B-A
By using the trigonometric identity cos A —cos B = 2sin ;— sin 5 we can
express C,, in the form
2B, . (v —wo)t . (evn +wo)t
Cn(t) = () = sin 5 sin 5

Case wyg = cvp: A particular solution of the nonhomogeneous equation can be
found in the form

yp = Ptcos(wot) + Qtsin(wot), P, @, constants .

A calculation gives
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The general solution of the nonhomogeneous ODE is

By, . .
y(t) = Q—t sin(wot) + K7 cos(wot) + Ks sin(wgt)
wo

In order for y to satisfy y(0) = ¢'(0) = 0, both constants K; and K3 need to be 0.
In this case the function C,(¢) is

B
Cn(t) = 2Tz)t sin(wyt) .

This case is known as resonance (the external frequency wy is equal to one of the
internal frequencies cv,, of the string).

Summary of the case a = 0. The solution u(z,t) of BVP (1) is given by the
following

e Non-resonant case: wg # cvy, Vne Zt
o
2B . (evn —wo)t . (cvn +wo)t .
u(w,t) = ”EZI () = 2 sin ~—~ 5 sin ~—~ 5 sin(vpz)

e Resonant case: Jjg € Z1, wy = cvj,

B,
u(z,t) = %tsin(wot) sin(woz)+

Wo
2Bn . n - t . n t .
+7§ (cn)? — o2 sin (v 5 wo) sin (ev —;—wo) sin(vy,x)
0

Forced vibrations with damping (a > 0). In this case the characteristic equa-
tion of the ODE y” + 2ay’ + (cvp)?y = 0is m? + 2am + (cv,)? = 0 and the
characteristic roots are

mi2 = —ax/a? — (cvp)?.

For simplicity, let us assume that 0 < a < cr; so that the quantity under the
2

radical is negative (for all n). Set w? = (cv,)? — a®. The characteristic roots are
then m; 9 = —a £ iw,. The general solution of the above homogeneous equation is
y(t) = e (K cos(wnt) + Ko sin(wpt)).
The nonhomogeneous equation
y" 4 2ay’ + (cvp)*y = B, cos(wot)

has a particular solution of the form

yp = P cos(wot) + @ sin(wot) .
The constants P and @ satisfy the system

((cyn)2 - w%) P+ 2awo@ = B,

—2awoP + ((cvn)? —w) Q =0
Thus,

((cvn)? = wi) By 2awq By,

;o Q .
((evn)? = wd)” + (2awo)” ((evn)? = wd)” + (2awo)’
A particular solution of the ODE
Cn(t)" 4 2aC,, (1) + (cvp)?Cr(t) = By, cos(wot)
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is therefore
B .
Cul) = o [((va)? =)o)+ 2esinent)]
n — Wy 0
We have thus obtained a particular series solution of the nonhomogeneous wave
equation

Ugt + 2au; — g, = f(x) cos(wot)

as

ZC’ sin(vy,x)

where C),(t) is given by the above formula.

Example 1. Consider the BVP

t
Utp — Ugpy = SIN T COS — O<z<m t>0
u(0,t) = u(m,t) =0 t>0
u(z,0) =0, w(x,0)=0 O<z<m

In this situation @ = 0, v, = n and wy = 1/2 (non resonant). The Fourier sine
coeflicients are B, = 0 for n # 1 and B; = 1. The solution is therefore

8 .t . 3t .
u(z,t) = 3 sin 7 sin = sinz

Example 2. For the BVP

Ut — Uz = €OS(3t) O<ax<m t>0
u(0,t) = u(m,t) =0 t>0
u(xz,0) =0, wu(z,0)=0 O<z<m

the external frequency wp = 3 is equal to one of the internal frequency cv3 = 3 (here
¢ =1 and v, =n). To find the series solution we need to expand F(x,t) = cos(3t)
into Fourier sine series in x over the interval [0, 7] (which is just the Fourier sine
series of 1 times cos(3t). We have

R
1=E§)2j+151n(21+1>$ Vo € (0, ).

In this case we have By; = 0, Byji1 = 4/(2j + 1)m. The solution u is

u(z,t) = %tsin(?)t) sin(3x)+

23234-1 . (2j — 2)t . (2j + 4)t
+ Z 2] T 1 sm 5 s 9

sin((25 + 1)z)

Equivalently
2t 8 in(i — 1)t sini - 2)¢
u(z,t) = — sin(3t) sin(3z) + Z sin(j — 1)t sin(j +2)
9

2i+1)[(25+1)* -9

sin((2j + 1)z)

Example 3. Now we find a particular solution of the nonhomogeneous wave equa-
tion with damping

Ut + 2Up — Uy = [sinx — sin(3x)] cos(4t)
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for x € [0, 7] and ¢ > 0. We have
a=1¢=1, wp=4, v, =n, and f(z) =sinz — sin(3z) .

Hence, B, =0 for n # 1, 3, By =1 and B3 = —1. Thus the functions C,(t) are
all zero except C7 and Cj:

Cy(t) = m [(1 — 42)cos(4t) + 851n(4t)] _ -15 cos(4;)8; 8.sin(4t)
Calt) = m [(3% — 42) cos(4t) + 8 sin(4t)] = 7‘308(4@1138 sin(4t)

A particular solution of the nonhomogeneous wave equation is therefore

(1) = —15cos(4t) + 8sin(4t) sinz + 7 cos(4t) — 8sin(4t)
289 113

sin(3x)

3. DOUBLE FOURIER SERIES

Consider a function of two variables f(x,y) with period 2L in z and with period
2H in y. That is,

flz+2L,y) = f(z,y +2H) = f(x,y), Va,y .

We can associate to f a Fourier series in the variable x

(2) f(z, —|— Z (an cos— + by (y) sin ?)

n>1

with coefficients depending in the variable y:
1 (L
:Z/_Lf(fmy)cos%dx, n=0, 1,2,

1 L
*ZLLf(x,y)sin?dx, n=12 -

Now each coefficient a,(y) and b,(y) is periodic in y and so we can associate to
them Fourier series in the variable y:

a m m
= n0+2( cos 7ry)+ aZ,, sin 7ry)

m>1 H
. mmy
b ( Z ( o cos =Y 4 b2, sin T>

If we substitute these expressions of a, and b,, into (2) we obtain a double series
called the double Fourier series of f(x,y). More precisely we have the following

A 1
flz,y) ~ 20 - 5 Z (AOm cos mH + By, sin #) +

4
m>1

1

5 Z: ( nocos— —|—Cnobln?> +

n
mmy nmT mmy
cos — cos —= + B,,;y, cOs —— sin ——= +
55 [ T 4 B, c08 "7 sin ™0

nmwr
+ Cpm Sin —— cos —= + Dy, Sin —— sin ——

mmy nwx mwy}
L H L H
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The coefficients are given by

1 H L nmx mmy
Apm = ﬁ/ / flz,y) €08 —— €08 — dxdy

1 H oL
Bym = IH [H [L flz,y) cos?bm Tydxdy
1 H L
Com = TH _H/Lf(x,y) sm?cos Hydgcd
1 2L nmwr mi
Avm = — f(x,y)sin —= sin dzd
LH J_ g )1

The convergence results of Fourier series that we have seen in the case of a single
variables have their counterparts in the case of multiple Fourier series. For example
if f(x,y) is smooth, then the association (~) is replaced by (=).

If we have a smooth function F(z,y) defined over the rectangle 0 < z < L,
0 < y < H, then there are various ways in which we can represent F(z,y) by a
double trigonometric series: sine in z, sine in y; or sine in x, cosine in ¥, and so on.
For example the Fourier cosine-sine series has the form

1
y):§ ZBOmSm%+Z ZBnmsin%cos?

m>1 n>1m>1

anLH//nysm

Example. The expansion of the function f(x,y) = 1 over the square [0, 7]? into
a sine-sine trigonometric series is

1= Z Z Chm sin(nmzx) sin(mmy)

n>1m>1

where

cos —dydx

where

AfL= (D" = (=1D)"]

Crm = / / sin(nmz) sin(mry)dydx =
We have then, for (x,y) € (0, )2,

ZZ sin(2j + 1)z sin(2k + 1)y
2+ D)2k + 1)

720 k>0

Remark. Multiple Fourier series in more than two variables can be defined in a
similar way.

4. APPLICATION TO BOUNDARY VALUE PROBLEMS

We consider boundary value problems that can be solved by using multiple
Fourier series.
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4.1. Vibrations of a rectangular membrane. The following BVP models the
vibrations of a rectangular membrane whose boundary is held fixed.

Ut = € (Ugy + Uyy) O<ax<L 0<y<H, t>0
u(0,y,t) = u(L,y,t) =0 O<y<H, t>0
u(x,0,t) = u(xz, H,t) =0 O<z<L,t>0

u(z,y,0) = f(z,y), w(z,y,0)=g(x,y) O0<z<L, 0<y<H.

The method of separation of variables for the homogeneous part leads to the fol-
lowing ODE problems

{X”+aX:0 {Y”+BY:0

X(0) = X(L)=0 ' | Y(0)=Y(H) =0 @ L T@+BT=0

where o and ( are the separation constants. The eigenvalues of the X- problem
and Y-problem are respectively

nw
fon

Brn =t Yo(y)sin(pmy)  pom = =, mEZT

Qy =V Xn(z) sin(vpx) Up = nezt

set
Wnm =\ Qpn + B = c\/V2 + 12, .

For n,m € ZT, the functions
ub . (z,y,t) = cos(Wnmt) sin(v,z) sin(,y)
w2, (z,y,t) = sin(Wpmt) sin(v,z) sin(,y)
The general series solution is
u(z,y,t) = Z Z [Anm cos(wWnmt) + Brm sin(wpmt)] sin(v,x) sin(pmy)
m>1n>1

In order for u to solve the nonhomogeneous conditions, we need to evaluate v and
uy at t = 0. First, we compute u,

ug(z,y,t) = Z Z Wnm [—Anm sin(wpmt) + Brm cos(wpmt)] sin(v,x) sin(pm,y)
m>1n>1
‘We have therefore

u(z,y,0) = f(z,y) = Z Z A sin(vp2) sin(pmy)

m>1n>1

ui(z,y,0) = g(x,y) = Z Z Whm Brm sin(vy,@) sin(pmy)

m>1n>1

The above series are the sine-sine series of f and g. Thus
4 L rH
A =15 | [ 1) sin) sin(wydyds

4 L H
/ / 9(z, y) sin(pmy) sin(vnz)dydz .
0 0

Bum = wnmLH

The solutions
€o8(Wpmt) sin(vy ) sin(wmy)
are called the (n,m)-mode of vibration of the membrane (also called standing
waves). The function sin(v,x)sin(u.,y) is called the profile of the wave. The
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oscillations of the (n,m)-mode has frequency wy,,. The set of points on the mem-
brane that do not move are called the nodal curves. The nodal lines for the (n,m)
mode is given by sin(v,x) sin(umy) = 0. The following figure illustrates the nodal
lines of some modes There are situations in which some different modes that have

U, u,, Uz,
- - +
+ —
+ + -
Ugy Uzs Us,
T -
— + —
+ - | + - +
L
+ -

the same frequency. For example when L = H, the two modes uj2 and uo; have
the same frequency
e
wiz = wa1 = — V5.

L
The mode w12 — u91 is again a standing wave. The modes u13 and w3, have also

the same frequency.

Ul UgmUs;

4.2. Two-dimensional heat flow. The heat flow in a rectangular plate with hor-
izontal sides are kept at zero temperature and with vertical sides insulated lead to
the following problem

U =k (Uzg + Uyy) O<z<L,0<y<H, t>0
uz(0,y,t) = uz(L,y,t) =0 O<y<H, t>0

w(z,0,t) = u(z, H,t) =0 O<z<L,t>0

u(z,y,0) = f(z,y) O0<z<L 0<y<H.

The separation of variables for the homogeneous part leads to the following ODE
problems
{X”+aX:0 {Y”+ﬂY:0

X'(0)=X'(L)=0 Y(0) = Y(H) =0 ° T +k(a+B8)T =0
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where o and (8 are the separation constants. The eigenvalues and eigenfunctions of
the X- problem

ap = 07 X(J (if) =1
and

2
Qp =V,

Xn(z)cos(vpz) v, = %, nezZ".
The eigenvalues and eigenfunctions of the Y-problem are

B = iy Yin(y)sin(pmy)  pm = % me "
Set
Anm = k(an + Bm) = c(V2 +u2,) n=0,1,2,--+, m=1,2 3,
The solutions with separated variables of the homogeneous part of the problem are:
tom (2,y,1) = e 2ot sin(p,y) m e 2t
Upm (2,9, 1) = et cos(vpx) sin(pmy) n,m € ZT
The series solution is

u(z,y,t) = Z Agme 0mt sin(pmy) + Z Z Apmemt cos(vpa) sin(fimy)
m>1 m>1n>1
The coefficients A, are obtained from the nonhomogeneous condition
u(@,y,0) = f(@,y) = Y Ao sin(imy) + > > Apm cos(vnz) sin(pimy) -
m>1 m>1n>1

This is the Fourier cosine-sine series of f in the rectangle. Thus

Ao = LH/ / f(z,y) sin(pumy)dydz,
Apm = LH/ / f(z,y) sin(vn,x) sin(umy)dyde,

4.3. A Poisson problem in a cube. We use triple Fourier series to solve the
following Poisson problem in the cube [0, 7]3.

Upg + Uyy + Uz, = F(2,y, 2) O<z<ml0<y<mO<z<m

u(ovy?z):u(ﬂ-ay,z):o O<y<7T,O<Z<7T
u(z,0,2) = u(x,m,2z) =0 O<zr<mO0<z<m
u<x7y?0):u(x7y77r)20 0<-’17<7T,0<y<7'('

(such problem models an electric potential in the cube). The homogeneous bound-
ary conditions suggest that we seek a series solution in the eigenfunctions of the SL
problems.
X"+aX =0 Y"+8Y =0 Z"+9Y =0
X0)=X(r)=0 " Y0)=Y(x)=0 " Z(0)=Z(m)=0
The eigenvalues and eigenfunctions are respectively
aj = j, X;(z) = sin(jz), jeELT
Br = k2, Yy (y) = sin(ky), kez*
v =12 Zi(z) = sin(lz), lezt

We seek a series solution is

u(z,y, z ZZZ ik sin(jx) sin(ky) sin(lz)
j>1
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Note that since
A (sin(jx) sin(ky) sin(12)) = — (52 + k* + *) sin(jx) sin(ky) sin(lz) ,
then

Au=F==>"3"%"(j*+k* +1*)Cj sin(jz) sin(ky) sin(lz)

J>1k>11>1
The last series is the triple Fourier sine-sine-sine series of the nonhomogeneous term
F(z,y,z). The coefficients Cjy; are therefore

773(3%224‘12)/0 /0 /0 F(z,y, z)sin(jz) sin(ky) sin(lz)dzdydz .

Cirl =
5. EXERCISES.
In exercises 1 to 7 solve the nonhomogeneous boundary value problems

Exercise 1.

Ut = Ugy O<zx<m t>0
u(0,t) =1, u(m,t) =3 t>0
u(z,0) =z O<z<mw

Exercise 2.
O<zxz<m t>0
u(0,t) =0, u(m,t) =0 t>0

u(z,0) =0 O<z<mw
Exercise 3.
Up = Ugy — T O<z<mt>0
u(0,t) =0, u(m,t) =0 t>0
u(z,0) =z O<z<m
Exercise 4.
Up = Ugy + 2t O<ax<m t>0
u(0,t) =0, u(m,t) =100 t>0
u(z,0) =0 O<z<m
Exercise 5.
Uy = Ugy — g O<z<m t>0
u(0,t) =0, u(m,t) =0 t>0

u(z,0) =0, u(z,0) =sinz O<zx<m
where g is a constant (gravitational for example).

Exercise 6.
Utt = Ugy + sin(2z) O<zx<m t>0
u(0,t) =0, u(m,t) =0 t>0
u(z,0) =sinz, u(z,0) = sin(3z) O<z<m

Exercise 7.
Upt = Ugy + sin(2z) cost O<zxz<m t>0
u(0,t) =0, u(m,t)=0 t>0
u(z,0) =0, u(z,0) =sinz O<z<m
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Exercise 8. The function f(z,y) is doubly periodic with period 27 in = and in y.
It is given on [—7, 71]? by f(x,y) = xy?. Find the double Fourier series of f.

Exercise 9. Same question as in problem 8 for the function given on [—7, ]2 by
fz,y) = 2%y
Exercise 10. Let f(x,y) = 1 on the square [0, 1]2. Find

1. The Fourier cosine-cosine series of f.

2. The Fourier cosine-sine series of f.

3. The Fourier sine-sine series of f.

4. The Fourier sine-cosine series of f.

Exercise 11. Same questions as in problem 10 for the function f(x,y) = zy on
the square [0, 7]%.
Exercise 12. Find the Fourier sine-sine series of the function f(z,y) given on the
square [0, 7]? by

1 ifx<y

In the remaining exercises use multiple Fourier series to solve the BVP (double
series except in the last exercise where you can use triple Fourier series).

Exercise 13.

U = 4(Upg + Uyy), 0<z<2 0<y<l1l,t>0
g (0,9,t) = uz(2,y,t) =0, O<y<l1l, t>0

u(z,0,t) = u(z,1,t) =0, 0<z<2,t>0

u(z,y,0) = 100 0<z<2, 0<y<l1.

Exercise 14.

Upp = Ugg + Uyy, O<z<m O<y<m t>0
u(0,y,t) = u(m, y,t) =0, O<y<m t>0
u(z,0,t) = u(z,m,t) =0, O<z<m t>0

u(z,y,0) = 0.05z(r — x)y(m — y) O<z<m O0<y<m
ue(z,y,0) =0 O<z<m O<y<m.

Exercise 15.
Upp = Ugg + Uyy, O<ax<m O<y<m t>0
u(0,y,t) = u(m,y,t) =0, O<y<mt>0
u(z,0,t) = u(z,7,t) =0, O<z<m t>0

u(x,y,0) =0 O<z<m O0<y<m
us(x,y,0) = f(x,y) O<z<m O<y<m.
where
_J1 it 7/d<x<3n/4, m/4<y<3r/4
flz,y) = { 0 elsewhere
Exercise 16.
Ugy + Uyy = 2u + 1, O<z<m O<y<m,

w(0,y) =u(my) =0, 0<y<m,
u(z,0) = u(z,m) =0, O<z<m.
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Exercise 17.
Ugy + Uyy = TY, O<zx<m O<y<m,
u(0,y) = u(m,y) =0, O<y<m,
u(z,0) =u(z,m) =0, O<z<m.

Exercise 18. (Dirichlet problem in a cube)

Ugy + Uyy + Uz, = 0, O<z<m O<y<m, O0<z<m,
u(oﬂy7z):u(ﬂ-7yvz):07 0<y<7r, O<z<m
u(z, 0, z) = —sin(2x) sin(5z), O<z<m 0<z<m,

(
u(z,m, z) = sin(3z) sin(z), O<z<m 0<z<m,
u(z,y,0) = sinzsin(2y), wu(z,y,7) =0, O<z<m O<y<m.



