
FOURIER-BESSEL SERIES AND

BOUNDARY VALUE PROBLEMS IN

CYLINDRICAL COORDINATES

The parametric Bessel’s equation appears in connection with the Laplace oper-
ator in polar coordinates. The method of separation of variables for problem with
cylindrical geometry leads a singular Sturm-Liouville with the parametric Bessel’s
equation which in turn allows solutions to be represented as series involving Bessel
functions.

1. The Parametric Bessel Equation

The parametric Bessel’s equation of order α (with α ≥ 0) is the the second order
ODE

(1) x2y′′ + xy′ + (λx2 − α2)y = 0 ,

with λ > 0 a parameter, or equivalently,

(2) x2y′′ + xy′ + (ν2x2 − α2)y = 0 ,

where ν =
√
λ. We have the following lemma.

Lemma 1. The general solution of equation (1) in x > 0 is

y(x) = AJα(νx) +BYα(νx) ,

where Jα and Yα are, respectively, the Bessel functions of the first and second kind
of order α and A, B are constants. Moreover, limx→0+ y(x) is finite if and only if
B = 0 and so

y(x) = AJα(νx) .

Proof. We transform equation (2) into the standard Bessel equation of order α by
using the substitution t = νx. Indeed, we have

dy

dx
= ν

dy

dt
, and

d2y

dx2
= ν2

d2y

dt2
.

In terms of the variable t, equation (1) becomes

x2ν2
d2y

dt2
+ xν

dy

dt
+ (x2ν2 − α2)y = 0

t2
d2y

dt2
+ t

dy

dt
+ (t2 − α2)y = 0

which is the Bessel equation of order α in the variable t. The general solution is
therefore, y(t) = AJα(t) +BYα(t). This is precisely,

y(x) = AJα(νx) +BYα(νx) .
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Note that Jα(0) = 0 if α > 0 and J0(0) = 1, while the second solution Yα satisfies
limx→0+ Yα(x) = −∞. Hence, if the solution y(x) is bounded in the interval (0, ϵ)
(with ϵ > 0), then necessarily B = 0.

We can rewrite equation (1) in a self-adjoint form by dividing by x and noticing
that (xy′)′ = xy′′ + y′ to obtain

(xy′)′ +

(
λx− α2

x

)
y = 0 .

We have here (with the notation of Note 9) that p(x) = x, r(x) = x, and q(x) =
α2/x. The point x = 0 is a singular point. Any Sturm-Liouville problem associated
with this equation on the interval [0, R] is a singular SL. As mentioned in Note 9,
we can use use only the boundary condition at the endpoint x = R.

2. A Singular Sturm-Liouville Problem

We associate to the parametric Bessel equation the following SL-problem

(3)

 (xy′)′ +

(
λx− α2

x

)
y = 0

b1y(R) + b2y
′(R) = 0

It is understood in this problem that y(x) is a bounded solution, or equivalently that
limx→0+ y(x) exists and is finite. In the space C0

p [0, R], of piecewise continuous
function on [0, R], we consider the following inner product

< f, g >x=

∫ R

0

f(x)g(x)xdx .

The proof given in Theorem 2 of Note 9, can be carried out almost verbatim to
establish the orthogonality of the eigenfunctions of problem (3).

There is an exceptional case which occurs when b1 = −b2α/R (with b2 ̸= 0).
In this case λ = 0 is an eigenvalue of Problem (3) with an eigenfunction xα. To
simplify the discussion we will assume that b1 ̸= −b2α/R.

By Lemma 1, we know that the bounded solutions of the ODE are y(x) = Jα(νx)

(with ν =
√
λ). Note that y′(x) = νJ ′

α(νx) In order for such a solution to satisfy
the boundary condition, the parameter ν must satisfy

(4) b1Jα(νR) + b2νJ
′
α(νR) = 0 .

This means that λ = ν2 is an eigenvalue of Problem (3) with eigenfunction Jα(νx).
It can also be proved that these solutions form a complete set (basis) in the space
of piecewise continuous functions. This imply that any function f ∈ C0

p [0, R] has
a representation as a series in these eigenfunctions. Denote by

0 ≤ ν1 < ν2 < ν3 < · · · < νj < · · · ,
be the increasing sequence of solutions of equation (4). The series expansion is then

f(x) ∼
∞∑
j=1

CjJα(νjx) ,

where the coefficients are given by,

Cj =
< f, Jα(νjx) >x

||Jα(νjx)||2x
=

(∫ R

0

f(x)Jα(νjx)xdx

)/(∫ R

0

Jα(νjx)
2xdx

)
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It is of importance to find the square norms ||Jα(νjx)||2x. We have the lemma.

Lemma 2. Let νj be a positive solution of (4), then we have the following:

• If b2 = 0, then

||Jα(νjx)||2x =

∫ R

0

Jα(νjx)
2xdx =

R2

2
Jα+1(νjR)2

• If b2 ̸= 0, let h = Rb1/b2, then we have

||Jα(νjx)||2x =

∫ R

0

Jα(νjx)
2xdx =

R2ν2j − α2 + h2

2ν2j
Jα(νjR)2

Proof. Since Jα(νjx) satisfies Problem (3) with λ = ν2j , then

x(xJα(νjx)
′)′ = (α2 − ν2j x

2)Jα(νjx) .

We multiply by 2Jα(νjx)
′ to get

2xJα(νjx)
′ [xJα(νjx)

′]
′
= (α2 − ν2j x

2)2Jα(νjx)Jα(νjx)
′ .

By using 2ff ′ = (f2)′, we obtain[
(xJα(νjx)

′)
2
]′

= (α2 − ν2j x
2)
(
Jα(νjx)

2
)′

.

Now we integrate from 0 to R. The left side is∫ R

0

[
(xJα(νjx)

′)
2
]′
dx =

[
(xJα(νjx)

′)
2
]x=R

x=0
= (RJα(νjR)′)

2
.

For the right side we use integration by parts,∫ R

0

(α2 − ν2j x
2)
(
Jα(νjx)

2
)′
dx =

[
(α2 − ν2j x

2)Jα(νjx)
2
]R
0
+ 2ν2j

∫ R

0

Jα(νjx)
2xdx

= 2ν2j ||Jα(νjx)||2x + (α2 − ν2jR
2)Jα(νjR)2

After equating the two sides, we get

(5) 2ν2j ||Jα(νjx)||2x = R2(Jα(νjR)′)2 + (ν2jR
2 − α2)Jα(νjR)2

We distinguish the two cases.
If b2 = 0, then the condition is Jα(νjR) = 0, and relation (5) becomes

||Jα(νjx)||2x =
R2(Jα(νjR)′)2

2ν2j
.

We simplify this expression by using Property (4) of Bessel junctions ((x−αJα(x))
′ =

−x−αJα+1(x)) in the form

Jα(x)
′ − α

x
Jα(x) = −Jα+1(x) .

For x = νjR, we have Jα(νjR) = 0 and it follows that

||Jα(νjx)||2x =
R2Jα+1(νjR)2

2ν2j
.

If b2 ̸= 0, then the boundary condition can be written as

νjJ
′
α(νjR) = −b1

b2
Jα(νjR) = − h

R
Jα(νjR) .
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Relation (5) becomes

2ν2j ||Jα(νjx)||2x = h2Jα(νjR)2+(ν2jR
2−α2)Jα(νjR)2 = (R2ν2j +h2−α2)Jα(νjR)2 .

From this we deduce that

||Jα(νjx)||2x =
R2ν2j + h2 − α2

2ν2j
Jα(νjR)2 .

3. Bessel Series Expansions

We summarize the above discussion in the following theorems.

Theorem 1. Consider the SL-problem

x2y′′ + xy′ + (λx2 − α2)y = 0, 0 < x < R ,
y(R) = 0

with bounded solutions y(x). The eigenvalues values consist of the sequence λj = ν2j ,

with j ∈ Z+ and where νjR is the j-th positive zero of Jα(x). That is,

ν1 < ν2 < ν3 < · · · < νj < · · ·
satisfy Jα(νjR) = 0. The corresponding j-th eigenfunction is

yj(x) = Jα(νjx).

Furthermore, the family of eigenfunctions Jα(νjx) is complete in C0
p [0, R]. The

square norm of the j-th eigenfunction is

||Jα(νjx)||2x =

∫ R

0

Jα(νjx)
2xdx =

R2

2
Jα+1(νjR)2

Theorem 2. Consider the SL-problem

x2y′′ + xy′ + (λx2 − α2)y = 0, 0 < x < R ,
b1y(R) + b2y

′(R) = 0, (b2 ̸= 0 b1 ≥ (−αb2/R))

with bounded solutions y(x). The eigenvalues consist of the sequence λj = ν2j , with

j ∈ Z+, such that,
ν1 < ν2 < ν3 < · · · < νj < · · ·

satisfy the equation

hJα(νjR) + νjRJ ′
α(νjR) = 0 , h =

Rb1
b2

The corresponding j-th eigenfunction is

yj(x) = Jα(νjx).

Furthermore, the family of eigenfunctions Jα(νjx) is complete in C1
p [0, R]. The

square norm of the j-th eigenfunction is

||Jα(νjx)||2x =

∫ R

0

Jα(νjx)
2xdx =

R2ν2j − α2 + h2

2ν2j
Jα(νjR)2

Consequence of Theorem 1 and 2. If f ∈ C0
p [0, R], then f has the expansion,

fav(x) =
f(x+) + f(x−)

2
=

∞∑
j=1

CjJα(νjx) ,
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with

Cj =
< f(x), Jα(νjx) >x

||Jα(νjx)||2x
and where the functions Jα(νjx) are as in Theorem 1 or as in Theorem 2.

Remark 1. If we set zj = νjR, then the above series takes the form

f(x+) + f(x−)

2
=

∞∑
j=1

CjJα

(
zj

x

R

)
where in the case of Theorem 1, the zj ’s are the positive roots of Jα, i.e.,

Jα(zj) = 0, j = 1, 2, 3, · · · ,

in the case of Theorem 2, the zj ’s are the positive roots of the equation

hJα(zj) + zjJ
′
α(zj) = 0, j = 1, 2, 3, · · · .

Remark 2. Since Jα(0) = 0 for α > 0 and J0(0) = 1, then λ = 0 is an eigenvalue
of the SL-problem (3) only in the case of boundary condition y′(R) = 0 and the
eigenfunction is J0(zjx/R), where the zj ’s form the sequence of positive zeros of
J ′
0.

We illustrate this theorems with some examples.

Example 1. Expand the function f(x) = 1 on [0, 3] into a J0-Bessel series with
condition J0(zj) = 0. This is the case of Theorem 1. We have

1 =
∞∑
j=1

CjJ0

(zjx
3

)
0 < x < 3,

Where

Cj =
1

||J0(zjx/3)||2x

∫ 3

0

J0(zjx/3)xdx .

The square norms are ||J0(zjx/3)||2x = 9J1(zj)
2/2 and to find the integral we use

Property 9 (

∫
tαJα−1(t)dt = tαJα(t) + C and a substitution).∫ 3

0

J0(zjx/3)xdx =
9

z2j

∫ zj

0

tJ0(t)dt =
9

z2j
(zjJ1(zj)− 0J1(0)) =

9J1(zj)

zj
.

Hence,

Cj =
2

zjJ1(zj)

and the series expansion is

1 = 2
∞∑
j=1

1

zjJ1(zj)
J0

(zjx
3

)
0 < x < 3 .

Now we give approximations of the first five terms of the series

j 1 2 3 4 5
zj 2.405 5.520 8.654 11.792 14.931

J1(zj) 0.519 -0.340 0.272 -0.233 0.207
2/zjJ1(zj) 0.801 -0.532 0.426 -0.365 0.324
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The beginning of the series expansion is

1 ≈ 0.801J0(0.80x)− 0.532J0(1.84x) + 0.426J0(2.88x)
−0.365J0(3.93x) + 0.324J0(4.98x) + · · ·

Example 2. An analogous calculation gives the expansion of f(x) = 1 over [0, R]
with respect Jα with end point condition Jα(zj) = 0 as

1 =
∞∑
j=1

CjJα

(zjx
R

)
0 < x < R,

Where

Cj =
2

R2Jα+1(zj)2

∫ R

0

Jα(zjx/R)xdx =
2

z2jJα+1(zj)2

∫ zj

0

tJα(t)dt .

Example 3. Expand f(x) = 1 on [0, 2] in Jα-Bessel series with endpoint condition
J ′
α(zj) = 0. This is the case of Theorem 2 with R = 2 and h = 0. The square

norms are

||Jα(zjx/2)||2x =
2(z2j − α2)

z2j
Jα(zj)

2

and

1 =
∞∑
j=1

CjJα

(zjx
2

)
,

with

Cj =
z2j

2(z2j − α2)Jα(zj)2

∫ 2

0

xJα(zjx/2)dx =
2

(z2j − α2)Jα(zj)2

∫ zj

0

tJα(t)dt

When α = 0, we get a more compact form of Cj

Cj =
2

z2jJ0(zj)
2

∫ zj

0

tJ0(t)dt =
2

z2jJ0(zj)
2
[tJ1(t)]

zj
0 =

2J1(zj)

zjJ0(zj)2

The expansion of f(x) = 1 over [0, 2] in a Bessel series with endpoint J ′
0(zj) = 0 is

1 = 2
∞∑
j=1

J1(zj)

zjJ0(zj)2
J0

(zjx
2

)
.

Example 4. Find the J0-Bessel series of f(x) = 1 − x2 over [0, 1] with endpoint
J0(zj) = 0.

We have for 0 < x < 1,

(1− x2) =
∞∑
j=1

CjJ0(zjx), Cj =
< 1− x2, J0(zjx) >x

||J0(zjx)||2x
.

We know that ||J0(zjx)||2x =
J1(zj)

2

2
(see previous calculations). To compute

< 1 − x2, J0(zjx) >x, we use the substitution t = zjx in the integral and the
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properties (tαJα(t))
′ = tαJα−1(t) and (t−αJα(t))

′ = −t−αJα+1(t):

< 1− x2, J0(zjx) >x =
1

z4j

∫ zj

0

(z2j − t2)tJ0(t)dt =
1

z4j

∫ zj

0

(z2j − t2)(tJ1(t))
′dt

=

[
(z2j − t2)tJ1(t)

]zj
0

z4j
+

2

z4j

∫ zj

0

t2J1(t)dt

=
2

z4j

∫ zj

0

t2J1(t)dt =
2

z4j

∫ zj

0

t2(−J0(t))
′dt

=
2
[
−t2J0(t)

]zj
0

z4j
+

4

z4j

∫ zj

0

tJ0(t)dt =
4

z4j

∫ zj

0

tJ0(t)dt

=
4

z4j
[tJ1(t)]

zj
0 =

4J1(zj)

z3j

Hence the coefficient Cj is

Cj =
4J1(zj)/z

3
j

J1(zj)2/2
=

8

z3jJ1(zj)
.

The series representation of (1− x2) is

(1− x2) = 9

∞∑
j=1

J0(zjx)

z3jJ1(zj)
, x ∈ (0, 1) .

Example 5. The expansion of xm over [0, 1] in Jm-Bessel series with endpoint
condition Jm(zj) = 0 can be obtained by using similar arguments as before.

xm =
∞∑
j=1

CjJm(zjx), Cj =
< xm, Jm(zjx) >x

||Jm(zjx)||2x

A calculation gives

Cj =
2

zjJm+1(zj)

and the series is

xm = 2
∞∑
j=1

Jm(zjx)

zjJm+1(zj)
, x ∈ (0, 1) .

4. Vibrations of a Circular Membrane

The following wave propagation problem models the small vertical vibrations of
a circular membrane of radius L whose boundary is held fixed. The initial position
and velocity are given by the functions f and g.

utt(x, y, t) = c2∆u(x, y, t) x2 + y2 < L2 , t > 0 ,
u(x, y, t) = 0 x2 + y2 = L2 , t > 0 ,
u(x, y, 0) = f(x, y) x2 + y2 < L2 ,
ut(x, y, 0) = g(x, y) x2 + y2 < L2 .

where

∆ =
∂2

∂x2
+

∂2

∂y2
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is the 2-dimensional Laplace operator. For the purpose of using the method of sep-
aration of variables, this problem is better suited for polar coordinates x = r cos θ,
y = r sin θ. Recall the expression of the Laplace operator in polar coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

The expression of the BVP becomes

(6)


utt = c2

(
urr +

ur

r
+

uθθ

r2

)
r < L , 0 ≤ θ ≤ 2π , t > 0 ,

u(L, θ, t) = 0 0 ≤ θ ≤ 2π , t > 0 ,
u(r, θ, 0) = f(r, θ) r < L , 0 ≤ θ ≤ 2π ,
ut(r, θ, 0) = g(r, θ) r < L , 0 ≤ θ ≤ 2π , .

It is understood that the sought solution u(r, θ, t) and its derivatives need to be
periodic in θ: i.e., u(r, θ, t) = u(r, θ + 2π, t) and so on. Since in this form the PDE
has a singularity at r = 0, we impose that the solution u be continuous at the
origin.

Before we consider the general case, we are going to solve problem (6) in the
particular case when f and g are independent on θ (invariant under rotations).

4.1. Rotationally invariant case. Since f and g depend only on r, we seek
solution u that is also independent on θ. That is, at each time t the displacement
, u = u(r, t) depends only on the radius r and not on the angle θ. In this case
problem (6) becomes a problem in 2 variables:

(7)


utt = c2

(
urr +

ur

r

)
r < L , t > 0 ,

u(L, t) = 0 t > 0 ,
u(r, 0) = f(r) r < L ,
ut(r, 0) = g(r) r < L .

We seek nontrivial solutions with separated variables u = R(r)T (t) of the homo-
geneous part of the problem:

utt = c2
(
urr +

ur

r

)
, u(L, t) = 0 .

The separation of variables of the PDE leads to

R′′(r)

R(r)
+

R′(r)

rR(r)
=

T ′′(t)

c2T (t)
= −λ (constant) .

This together with the boundary condition give the ODE problems for R(r) and
T (t) {

r2R′′ + rR′ + λr2R = 0, 0 < r < R ,
R(L) = 0

and

T ′′ + c2λT = 0 .

The R-problem is the eigenvalue problem. Its ODE is the parametric Bessel
equation of order 0. Since we are seeking bounded solutions, then the eigenvalues
and eigenfunctions are

λj =
z2j
L2

, Rj(r) = J0

(zjr
L

)
, j = 1, 2, 3, · · ·

where zj is the j-th positive root of J0(x) = 0.
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For each j ∈ Z+, the T -equations becomes T ′′+(czj/L)
2T = 0 with independent

solutions cos(czjt/L) and sin(czjt/L) .
For each j ∈ Z+, the homogeneous part has two independent solutions with

separated variables

u1
j (r, t) = cos

(
czjt

L

)
J0

(zjr
L

)
and u2

j (r, t) = sin

(
czjt

L

)
J0

(zjr
L

)
.

The general series solution of the homogeneous part is the linear combination of all
the u1

j ’s and u2
j ’s:

u(r, t) =
∞∑
j=1

[
Aj cos

(
czjt

L

)
+Bj sin

(
czjt

L

)]
J0

(zjr
L

)
Now we use the nonhomogeneous conditions to find the constants Aj and Bj so

that the series solution satisfies the whole problem. First we compute ut:

ut(r, t) =

∞∑
j=1

czj
L

[
−Aj sin

(
czjt

L

)
+Bj cos

(
czjt

L

)]
J0

(zjr
L

)
.

We have

u(r, 0) = f(r) =

∞∑
j=1

AjJ0

(zjr
L

)
,

ut(r, 0) = g(r) =

∞∑
j=1

czj
L

BjJ0

(zjr
L

)
.

These are, respectively, the J0-Bessel series of the functions f and g over [0, L]
with endpoint condition J0(zj) = 0. We have then,

Aj =
< f(r), J0(zjr/L) >r

||J0(zjr/L)||2r
=

2

L2J1(zj)2

∫ L

0

rf(r)J0(zjr/L)dr ,

Bj =
L

czj

< g(r), J0(zjr/L) >r

||J0(zjr/L)||2r
=

2

cLzjJ1(zj)2

∫ L

0

rg(r)J0(zjr/L)dr .

Example. (The struck drum head). Suppose that the above circular membrane,
with L = 10 which was originally at equilibrium is struck at time t = 0 at its center
in such a way that each point located at distance < 1 from the center is given a
velocity −1. The BVP in this case is (we take c = 1)

utt =
(
urr +

ur

r

)
r < 10 , t > 0 ,

u(10, t) = 0 t > 0 ,
u(r, 0) = 0 ut(r, 0) = g(r) r < L .

where

g(r) =

{
−1 if 0 < r < 1 ,
0 if 1 < r < 10 .

In this case the coefficients are Aj = 0 and

Bj =
1

5zjJ1(zj)2

∫ 10

0

rg(r)J0(zjr/10)dr .
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For the last integral, we have∫ 10

0

rg(r)J0(zjr/10)dr = −
∫ 1

0

rJ0(zjr/10)dr = −100

z2j

∫ zj/10

0

tJ0(t)dt

= −100

z2j
[tJ1(t)]

zj/10
0 = −10

zj
J1(zj/10)

We have therefore

Bj = −2J1(zj/10)

z2jJ1(zj)
2

and

u(r, t) = −2

∞∑
j=1

J1(zj/10)

z2jJ1(zj)
2
sin

(
zjt

10

)
J0

(zjr
10

)
.

The following table list the approximate values

j 1 2 3 4 5
zj 2.405 5.520 8.654 11.792 14.931

J1(zj) 0.519 -0.340 0.272 -0.233 0.207
J1(zj/10) 0.119 0.266 0.393 0.493 0.557

Bj -0.153 -0.151 -0.143 -0.131 -0.117

We have then

u(r, t) ≈ −0.153 sin(0.24t)J0(0.24r)− 0.151 sin(0.55t)J0(0.55r)
−0.143 sin(0.86t)J0(0.86r)− 0.131 sin(1.18t)J0(1.18r)

−0.117 sin(14.9t)J0(14.9r)− · · ·

4.2. General case. Consider again BVP (6). This time we assume that the initial
position f and initial velocity g depend effectively on θ and r and also u = u(r, θ, t).
We emphasize the 2π-periodicity of u and its derivative uθ, with respect to θ, by
adding it to the problem. The problem is therefore

(8)



utt = c2
(
urr +

ur

r
+

uθθ

r2

)
r < L , 0 ≤ θ ≤ 2π , t > 0 ,

u(L, θ, t) = 0 0 ≤ θ ≤ 2π , t > 0 ,
u(r,−π, t) = u(r, π, t) 0 < r < L , t > 0 ,
uθ(r,−π, t) = uθ(r, π, t) 0 < r < L , t > 0 ,
u(r, θ, 0) = f(r, θ) r < L , 0 ≤ θ ≤ 2π ,
ut(r, θ, 0) = g(r, θ) r < L , 0 ≤ θ ≤ 2π .

We apply the method of separation of variables to the homogeneous part. Let

u(r, θ, t) = R(r)Θ(θ)T (t)

be a nontrivial solution of the homogeneous part. For such a function the wave
equation can be written as

T ′′(t)

c2T (t)
=

R′′(r)

R(r)
+

R′(r)

rR(r)
+

Θ′′(θ)

r2Θ(θ)
= −λ (constant) .

Thus T ′′(t) + c2λT (t) = 0 and

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
− λr2

Θ′′(θ)

Θ(θ)
= 0 .
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The last equation can be separated:

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ λr2 = −Θ′′(θ)

Θ(θ)
= α2 (constant) .

The ODEs for R and Θ are

r2R′′ + rR′ + (λr2 − α2)R = 0 and Θ′′ + α2Θ = 0 .

The homogeneous boundary conditions imply that R(L) = 0, Θ(π) = Θ(−π) and
Θ′(π) = Θ′(−π). The three ODE problems are Θ′′ + α2Θ = 0

Θ(π) = Θ(−π)
Θ′(π) = Θ′(−π)

{
r2R′′ + rR′ + (λr2 − α2)R = 0
R(L) = 0

T ′′(t) + c2λT (t) = 0

The Θ-problem is the regular periodic SL-problem and theR-problem is the singular
Bessel problem of order α with endpoint condition R(L) = 0.

The eigenvalues and eigenfunctions of the Θ-problem are.

α2
0 = 0 , Θ0(θ) = 1 ;

for m ∈ Z+,

α2
m = m2 , Θ1

m(θ) = cos(mθ) , Θ2
m(θ) = sin(mθ) .

We move to the R-problem. For each α = m (withm ∈ Z+∪{0}), the eigenvalues
and eigenfunctions of the R-problem are

λmj =
z2mj

L2
, Rmj(r) = Jm

(zmjr

L

)
,

where {zmj}j is the increasing sequence of zeros of Jm. That is,

0 < zm1 < zm2 < · · · < zmj < · · ·

satisfy Jm(zmj) = 0.
Now that we have the eigenvalues and eigenfunctions of the Θ- and R-problems,

we solve the T -problem. For each m ∈ Z+∪{0} and each j ∈ Z+, the corresponding
T -equation is

T ′′ +
(czmj

L

)2
T = 0

with two independent solutions

T 1
mj = cos

(
czmjt

L

)
and T 2

mj = sin

(
czmjt

L

)
.

The collection of solutions with separated variables of the homogeneous part
of Problem (8) consists of the following functions (where m = 0, 1, 2, · · · and
j = 1, 2, · · · )

u1
mj(r, θ, t) = Jm

(zmjr

L

)
cos(mθ) cos

(
czmjt

L

)
,

u2
mj(r, θ, t) = Jm

(zmjr

L

)
sin(mθ) cos

(
czmjt

L

)
,

u3
mj(r, θ, t) = Jm

(zmjr

L

)
cos(mθ) sin

(
czmjt

L

)
,

u4
mj(r, θ, t) = Jm

(zmjr

L

)
sin(mθ) sin

(
czmjt

L

)
.
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These are the (m, j)-modes of vibrations of the membrane. Up to a rotation, the
profile of each mode is given by the graph of the function

vmj(r, θ) = Jm

(zmjr

L

)
cos(mθ)

(each (m, j)-mode is just vmj times a time-amplitude). For each (m, j), the mem-
brane can be divided into regions where vmj > 0 and regions where vmj < 0. The
curves where vmj = 0 are called the nodal lines (see figure).

(m,j)=(0,1)

+

(m,j)=(1,1) (m,j)=(2,1)

(m,j)=(0,2) (m,j)=(1,2) (m,j)=(2,2)

−  + + + 

− 

− 

+

− 

+
+

− 
− 

++

+

+

− 

− 

− − 

Some of the (m, j)-modes are graphed in the figure.

m=0, j=1 m=1, j=1 m=2, j=1

m=0, j=2 m=1, j=2 m=2, j=2
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The general series solution of the homogeneous part is a linear combination of
the solutions uk

mj :

u(r, θ, t) =
∞∑

m=0

∞∑
j=1

Jm

(zmjr

L

)
cos

(
czmjt

L

)
(Amj cos(mθ) +Bmj sin(mθ))

+Jm

(zmjr

L

)
sin

(
czmjt

L

)
(Cmj cos(mθ) +Dmj sin(mθ))

In order for such a solution to satisfy the nonhomogeneous condition, we need

u(r, θ, 0) = f(r, θ) =

∞∑
m=0

∞∑
j=1

Jm

(zmjr

L

)
[Amj cos(mθ) +Bmj sin(mθ)]

and

ut(r, θ, 0) = g(r, θ) =
∞∑

m=0

∞∑
j=1

czmjt

L
Jm

(zmjr

L

)
[Cmj cos(mθ) +Dmj sin(mθ)]

These are the (double) Fourier-Bessel series of f and g. To find the coefficients,
we can proceed as follows. Expand f(r, θ) into its Fourier series (view r as a
parameter),

f(r, θ) =
A0(r)

2
+

∞∑
m=1

Am(r) cos(mθ) +Bm(r) sin(mθ)

where

Am(r) =
1

π

∫ 2π

0

f(r, θ) cos(mθ)dθ , m = 0, 1, 2, · · ·

Bm(r) =
1

π

∫ 2π

0

f(r, θ) sin(mθ)dθ , m = 1, 2, 3, · · ·

Now expand Am(r) and Bm(r) into a Jm-Bessel series with end point condition
Jm(z) = 0. We get,

Am(r) =

∞∑
j=1

AmjJm

(zmjr

L

)
, Amj =

1

||Jm||2r

∫ L

0

rAm(r)Jm

(zmjr

L

)
dr

and

Bm(r) =

∞∑
j=1

BmjJm

(zmjr

L

)
, Bmj =

1

||Jm||2r

∫ L

0

rBm(r)Jm

(zmjr

L

)
dr

After substituting the expressions of Am(r) and Bm(r) in term of the integrals
of f , we obtain the coefficients Amj and Bmj of the series solution as:

Amj =
1

π||Jm(zmjr/L)||2r

∫ 2π

0

∫ L

0

rf(r, θ)Jm

(zmjr

L

)
cos(mθ)drdθ ,

Bmj =
1

π||Jm(zmjr/L)||2r

∫ 2π

0

∫ L

0

rf(r, θ)Jm

(zmjr

L

)
sin(mθ)drdθ .

The other coefficients Cmj and Dmj are obtained in a similar way by using the
second initial condition.

Example Take L = 1, c = 2, g(r, θ) = 0 and f(r, θ) = (1 − r2) + sin θ. In this
situation Cmj = Dmj = 0 for m ≥ 0 and j ≥ 1. Furthermore,

Amj = 0 for m ≥ 1
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and

Bmj = 0 for m ≥ 2

Hence, the solution has the form

u(r, θ, t) =
∑
j≥1

A0jJ0(z0jr) cos(2z0jt) +
∑
j≥1

B1jJ1(z1jr) cos(2z1jt) sin θ ,

where

A0j =
1

||J0(z0jr)||2r

∫ 1

0

r(1− r2)J0(z0jr)dr

and

B1j =
1

π||J1(z1jr)||2r

∫ 2π

0

∫ 1

0

rJ1(z1jr) sin
2 θ drdθ =

1

||J1(z1jr)||2r

∫ 1

0

rJ1(z1jr)dr .

The square norms are

||J0(z0jr)||2r =
J1(z0j)

2

2
and ||J1(z1jr)||2r =

J2(z1j)
2

2
.

The integral involved in A0j can be evaluated. First, notice that by using the
property (tαJα(t))

′ = tαJα−1(t) and integration by parts, we get∫
t3J0(t)dt = t2(tJ1(t))− 2

∫
t(tJ1(t))dt = t3J1(t)− 2t2J2(t) + C .

Hence, by using the substitution t = z0jr, we get∫ 1

0

r(1− r2)J0(z0jr)dr =
1

z40j

∫ z0j

0

[
z20jt− t3

]
J0(t)dt

=
1

z40j

[
(z20jt− t3)J1(t) + 2t2J2(t)

]z0j
0

=
2J2(z0j)

z20j

and so

A0j =
4J2(z0j)

z20jJ1(z0j)
2
.

The solution u is

u(r, θ, t) = 4
∞∑
j=1

J2(z0j)J0(z0jr)

z20jJ1(z0j)
2

cos(2z0jt) +
∞∑
j=1

B1jJ1(z1jr) cos(2z1jt) sin θ .

5. Heat Conduction in a Circular Plate

The following boundary value problem models heat propagation in a thin circular
plate with insulated faces and with heat transfer on the circular boundary. In polar
coordinates, the problem is:

(9)


ut = k

(
urr +

ur

r
+

uθθ

r2

)
r < L , 0 ≤ θ ≤ 2π , t > 0 ,

hu(L, θ, t) + Lur(L, θ, t) = 0 0 ≤ θ ≤ 2π , t > 0 ,
u(r, θ, 0) = f(r, θ) r < L , 0 ≤ θ ≤ 2π ,
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where h ≥ 0 is a constant. Let us assume for simplicity that f is rotation invariant
f = f(r) is independent on θ. We seek then a solution that is also independent on
θ and the problem becomes.

(10)


ut = k

(
urr +

ur

r

)
r < L , t > 0 ,

hu(L, t) + Lur(L, t) = 0 t > 0 ,
u(r) = f(r) r < L .

The solutions with separated variables: u(r, t) = R(r)T (t) of the homogeneous part
leads to the ODE problems{

r2R′′ + rR′ + λr2R = 0
hR(L) + LR′(L) = 0

and T ′ + (kλ)T = 0 .

The R-equation is the parametric Bessel equation of order 0. The values λ < 0
cannot be eigenvalues. The case λ = 0 is a particular case.

Remark about the case λ = 0. In this case, the R-equation is also a Cauchy-
Euler equation with general solution A + B ln r and the bounded solutions are
R(r) = A. Such a solutions satisfies the boundary condition if and only if h = 0.
This correspond to the situation where the boundary is insulated

The (positive) eigenvalues and eigenfunctions are:

λj =
z2j
L2

, Rj(r) = J0

(zjr
L

)
, j ∈ Z+,

where zj is the j-th positive root of the equation

hJ0(z) + zJ ′
0(z) = 0 .

A corresponding T -solution is

Tj(t) = exp

(
−
kz2j
L2

t

)
.

The series solution of the homogeneous part, when h > 0, is

u(r, t) =

∞∑
j=1

Cje
−(kz2

j /L
2)tJ0

(zjr
L

)
and when h = 0 is

u(r, t) = C0 +
∞∑
j=1

Cje
−(kz2

j /L
2)tJ0

(zjr
L

)
In order for such a series to satisfy the nonhomogeneous condition, we need

u(r, 0) = f(r) = C0 +

∞∑
j=1

CjJ0

(zjr
L

)
(with C0 = 0 when h > 0). This is the J0-Bessel series of f with endpoint condition
hJ0(z) + zJ ′

0(z) = 0. We have then (see Theorem 2),

Cj =
1

||J0(zjr/L)||2r

∫ L

0

rf(r)J0

(zjr
L

)
dr =

2z2j
L2(z2j + h2)J0(zj)2

∫ L

0

rf(r)J0

(zjr
L

)
dr .
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Remark. If instead of being independent on θ, the initial condition is of the form
f(r) cos(mθ), the solution u of problem (9) can be put in the form

u(r, θ, t) = v(r, t) cos(mθ) ,

where v solves the two variables problem

(11)


vt = k

(
vrr +

vr
r

−m2 v

r2

)
r < L , t > 0 ,

hv(L, t) + Lvr(L, t) = 0 t > 0 ,
v(r) = f(r) r < L .

This time the separation of variables of the v-problem leads to the solution v of the
form

v(r, t) =

∞∑
j=1

Cje
−(kz2

j /L
2)tJm

(zjr
L

)
6. Helmholtz Equation in the Disk

The Helmholtz equation in the disk is the following two-dimensional eigenvalue
problem: Find λ and nontrivial functions u(r, θ) defined in the disk of radius L
such that:

(12)

{
∆u(r, θ) + λu(r, θ) = 0 0 < r < L, 0 ≤ θ ≤ 2π ,
u(L, θ) = 0 0 ≤ θ ≤ 2π .

The solutions with separated variables u(r, θ) = R(r)Θ(θ) leads to the following
one-dimensional eigenvalue problems{

Θ′′(t) + α2Θ(t) = 0
Θ and Θ′ 2π − periodic

and {
r2R′′(r) + rR′(r) + (λr2 − α2)R(r) = 0
R(L) = 0 .

The eigenvalues and eigenfunctions of the Θ-problem are

α2
m = m2 , Θ1

m(θ) = cos(mθ) and Θ2
m(θ) = sin(mθ) m = 0, 1, 2, · · ·

For each m, the R-problem is an order m Bessel type eigenvalues problem with
eigenvalues and eigenfunctions

λj,m =
(zj,m

L

)2
, Rj,m(r) = Jm

(zj,mr

L

)
.

where zj,m is the j-th positive roots of the equation Jm(z) = 0.
The eigenvalues and eigenfunctions of the Helmholtz equation are

λj,m =
z2j,m
L2

,

 u1
j,m(r, θ) = cos(mθ)Jm

(zj,mr

L

)
,

u2
j,m(r, θ) = sin(mθ)Jm

(zj,mr

L

)
,

Eigenfunctions expansion for a nonhomogeneous problem. The eigenfunc-
tions u1

j,m, u2
j,m can can be used to solve nonhomogeneous problems such as the

following

(13)

{
∆u(r, θ) + au(r, θ) = F (r, θ) 0 < r < L, 0 ≤ θ ≤ 2π ,
u(L, θ) = 0 0 ≤ θ ≤ 2π .
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where a is a constant. We expand F and u into these eigenfunctions (Fourier-Bessel
series). We seek then a solution u of the form

u(r, θ) =

∞∑
m=0

∞∑
j=1

[Am,j cos(mθ) +Bm,j sin(mθ)] Jm

(zj,mr

L

)
By using ∆u1,2

m,j = −λm,ju
1,2
m,j , we deduce that

(14) ∆u+ au =
∞∑

m=0

∞∑
j=1

(a− λm,j) [Am,j cos(mθ) +Bm,j sin(mθ)] Jm

(zj,mr

L

)
The Fourier-Bessel series of F is

(15) F (r, θ) =
∞∑

m=0

∞∑
j=1

[
F 1
m,j cos(mθ) + F 2

m,j sin(mθ)
]
Jm

(zj,mr

L

)
where the coefficients F 1,2

m,j are given by

(16)

F 1
m,j

F 2
m,j

}
=

1

π||Jm(zm,jr/L)||2r

∫ 2π

0

∫ L

0

F (r, θ)rJm

(zm,jr

L

)
dr

{
cos(mθ)
sin(mθ)

dθ .

By identifying the coefficients in the series (14) and (15), we get

Am,j =
F 1
m,j

a− λm,j
and Bm,j =

F 2
m,j

a− λm,j
.

provided that a ̸= λm,j for every m, j (nonresonant case).

Example. Consider the problem{
∆u(r, θ)− u(r, θ) = 1 + r2 sin(2θ) 0 < r < 3, 0 ≤ θ ≤ 2π ,
u(3, θ) = 0 0 ≤ θ ≤ 2π .

In this problem, we have F 1,2
m,j = 0, for every m except when m = 0 and m = 2.

Furthermore, F 1
2,j = 0 for every j. For the remainder of the coefficients, we have

F 1
0,j =

1

||J0(z0,jr/3)||2r

∫ 3

0

rJ0(z0,jr/3)dr

=
2

z20,jJ1(z0,j)
2

∫ z0,j

0

tJ0(t)dt

=
2

z0,jJ1(z0,j)

and

F 2
2,j =

1

||J2(z2,jr/3)||2r

∫ 3

0

r3J2(z0,jr/3)dr

=
2(92)

z42,jJ3(z2,j)
2

∫ z2,j

0

t3J0(t)dt

=
162

z2,jJ3(z2,j)
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The corresponding coefficients of the solutions are

A1
0,j =

F 1
0,j

−1− (z20,j/9)
= − 18

z0,j(9 + z20,j)J1(z0,j)

B1
2,j =

F 2
2,j

−1− (z22,j/9)
= − 1458

z2,j(9 + z22,j)J3(z2,j)

The solution of the problem is

u = −18

∞∑
j=1

J0(z0,jr/3)

z0,j(9 + z20,j)J1(z0,j)
− 1458

∞∑
j=1

J2(z2,jr/3) sin(2θ)

z2,j(9 + z22,j)J3(z2,j)

7. Exercises

In Exercises 1 to 9, find the Jα-Bessel series of the given function f(x) over the
given interval and with respect to the given endpoint condition.

Exercise 1. f(x) = 100 over [0, 5], and J0(z) = 0.

Exercise 2. f(x) = x over [0, 7], and J1(z) = 0.

Exercise 3. f(x) = −5 over [0, 1], and J2(z) = 0.

Exercise 4. f(x) =

{
1 if 0 ≤ x ≤ 1
0 if 1 < x ≤ 2

over [0, 2], and J0(z) = 0.

Exercise 5. f(x) = x over [0, 3], and J ′
1(z) = 0

Exercise 6. f(x) = 1 over [0, 3], and J0(z) + zJ ′
0(z) = 0.

Exercise 7. f(x) = x2 over [0, 3], and J0(z) = 0 (leave the coefficients in an
integral form).

Exercise 8. f(x) = x2 over [0, 3], and J3(z) = 0 (leave the coefficients in an
integral form).

Exercise 9. f(x) =
√
x over [0, π], and J1/2(z) = 0 (use the explicit expression of

J1/2 and relate to Fourier series).

In exercises 11 to 14, solve the indicated boundary value problem that deal with
heat flow in a circular domain.

Exercise 11.

ut = 2
(
urr +

ur

r

)
0 < r < 2, t > 0,

u(2, t) = 0 t > 0,
u(r, 0) = 5 0 < r < 2.

Exercise 12.

ut = 2
(
urr +

ur

r

)
0 < r < 2, t > 0,

ur(2, t) = 0 t > 0,
u(r, 0) = 5 0 < r < 2.

Exercise 13.

ut = 2
(
urr +

ur

r

)
0 < r < 2, t > 0,

2u(2, t)− ur(2, t) = 0 t > 0,
u(r, 0) = 5 0 < r < 2.
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Exercise 13. Find a solution u of the form u(r, θ, t) = v(r, t) sin(2θ) of the problem.

ut = 2
(
urr +

ur

r
+

uθθ

r2

)
0 < r < 2, 0 ≤ θ ≤ 2π, t > 0,

u(2, θ, t) = 0 0 ≤ θ ≤ 2π, t > 0,
u(r, θ, 0) = 5r2 sin(2θ) 0 < r < 2, 0 ≤ θ ≤ 2π, .

Exercise 14.

ut =

(
urr +

ur

r
− 9u

r2

)
0 < r < 1, t > 0,

u(1, t) = 0 t > 0,
u(r, 0) = r3 0 < r < 1.

In exercises 15 to 18, solve the indicated boundary value problem that deal with
wave propagation in a circular domain.
Exercise 15.

utt = 2
(
urr +

ur

r

)
0 < r < 3, t > 0,

u(3, t) = 0 t > 0,
u(r, 0) = 9− r2 0 < r < 3,
ut(r, 0) = 0 0 < r < 3.

Exercise 16.

utt =
(
urr +

ur

r

)
0 < r < 1, t > 0,

u(1, t) = 0 t > 0,
u(r, 0) = 0 0 < r < 1,
ut(r, 0) = g(r) 0 < r < 1.

where

g(r) =

{
1 if 0 < r < 1/2,
0 if (1/2) < r < 1.

Exercise 17. Find a solution u of the form u(r, θ, t) = v(r, t) cos θ

utt =
(
urr +

ur

r
+

uθθ

r2

)
0 < r < 1, t > 0,

u(1, t) = 0 t > 0,
u(r, 0) = 0 0 < r < 1,
ut(r, 0) = g(r) cos θ 0 < r < 1.

where

g(r) =

{
r if 0 < r < 1/2,
0 if (1/2) < r < 1.

Exercise 18. Find a solution u of the form u(r, θ, t) = v(r, t) cos θ

utt =
(
urr +

ur

r
+

uθθ

r2

)
0 < r < 1, t > 0,

u(1, t) = 0 t > 0,
u(r, 0) = J1(z1,1r) sin θ 0 < r < 1,
ut(r, 0) = g(r) cos θ 0 < r < 1.

where z1,1 is the first positive zero of J1 and where

g(r) =

{
r if 0 < r < 1/2,
0 if (1/2) < r < 1.
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In exercises 19 to 21, solve the Helmholtz equation in the disk with radius L
Exercise 19. L = 2

∆u− u = 2, u(2, θ) = 0

Exercise 20. L = 1
∆u = r sin θ, u(1, θ) = 0

Exercise 21. L = 3

∆u+ 2u = −1 + 5r3 cos(3θ), u(3, θ) = 0

Exercise 22. Solve the following Dirichlet problem in the cylinder with radius 10
and height 20

urr +
ur

r
+ uzz = 0 0 < r < 10, 0 < z < 20,

u(10, z) = 0 0 < z < 20,
u(r, 0) = 0 0 < r < 10,
u(r, 20) = 1 0 < r < 10.


