
THE WAVE EQUATION

The aim is to derive a mathematical model that describes small vibrations of a
tightly stretched flexible string for the one-dimensional case, or of a tightly stretched
membrane for the dimensional case. The derivation of these models is mainly based
on Newton’s Second Law of Motion (Force = mass × acceleration).

1. The One-Dimensional Wave Equation

We derive the simplest form of the wave equation for the idealized string by
making a number of assumption on the physical string.

Assume that a flexible string of length L is tightly stretched along the x-axis so
that one of its end point is at x = 0 and the other at x = L. We assume that the
tension force on the string is the dominant force and all other forces acting on the
string are negligible (no external forces are applied to the string, the damping forces
(resistance) are negligible, and that the weight of the string is also negligible). The
flexibility of the string implies that at each point, the tension force has constant
magnitude and has the direction of the tangent line to the string. We also assume
that each point of the string moves only vertically1

Let u(x, t) denotes the (vertical) displacement at time t of the point x on the
string. Note that at a fixed time t = t0, the shape of the string is given by graph
the function u(x, t0) (See Figure 1.). Our aim is to find an equation that is satisfied
by u(x, t). Consider a small element of the string between the points x and x+∆x
(∆x > 0 small and we are assuming that this element moves vertically). The total
force to which this element is subject to is the tension force exerted at the left end

T⃗ (x, t) and the tension force exerted at the right end T⃗ (x + ∆x, t) by the rest of
the string. These forces have the same constant magnitude T :

|T⃗ (x, t)| = |T⃗ (x+∆x, t)| = T, ∀x,∀t.

Let θ(x, t) be the angle between T⃗ (x, t) and i⃗ and θ(x + ∆x, t) be the angle

between T⃗ (x + ∆x, t) and i⃗. We take these angles to be between 0 and π. Since
we are assuming that we are dealing with small vibrations then either θ is close to
0 or close to π. In Figure 2, θ(x, t) is close is close to π and θ(x + ∆x, t) is close
is close to 0 (for illustration purposes, Figure 2. is out of proportion and does not
convey that the vibrations are small).

The total vertical force acting on the element is

F = T⃗ (x, t) · j⃗ + T⃗ (x+∆x, t) · j⃗
= T (sin(θ(x, t)) + sin(θ(x+∆x, t)))(1)

Date: January 14, 2016.
1In fact a given point on the string moves up and down not along the vertical but along a

curve that is slightly deflected from the vertical vertical. But the horizontal displacement is very

small compared to the vertical displacement. This is why we are justified in assuming only vertical
displacements.
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x

u(x,t)

Shape of string at time t 
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Figure 1. Shape the string at fixed time t given by the graph of
f(x) = u(x, t)

T(x,t)

T(x+∆ x,t)

θ (x+∆ x,t)

θ (x,t)

x x+∆ x

Figure 2. Element of string at time t subject to tension forces

Recall the following linear approximation formulas

sin θ ≈ θ ≈ tan θ for θ close to 0.

and
sin θ ≈ π − θ ≈ − tan θ for θ close to π.

Recall also that the slope of the tangent line to the graph of a function y = f(x),
through the point (x0, y0), is

df

dx
(x0) = tan θ0 ,

where θ0 is the inclination angle. In our case the shape of the string at a fixed time
t is given as the graph of the function u(x, t) (t fixed and x varies). We have then

tan θ(x, t) =
∂u

∂x
(x, t) and tan θ(x+∆x, t) =

∂u

∂x
(x+∆x, t)(2)

By using (1), (2), and the approximation formulas for sin θ, we obtain the following
approximation for the vertical force acting on the element of the string

F ≈ T

(
∂u

∂x
(x+∆x, t)− ∂u

∂x
(x, t)

)
(3)
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Now, we use Newton’s second law to replace F in (3) by ∆m · a, where a is the
acceleration of the element at time t and ∆m is the mass of the element to obtain

∆m · a ≈ T

(
∂u

∂x
(x+∆x, t)− ∂u

∂x
(x, t)

)
(4)

But the acceleration is the second derivative (w.r.t time) of the position function
and the mass is the linear density ρ of the string times the length:

∆m ≈ ρ∆x and a ≈ ∂2u

∂t2
(x, t).

Hence, after replacing a and ∆m by these expressions in (4) and dividing by ∆x,
we obtain

ρ
∂2u

∂t2
(x, t) ≈ T

∂u

∂x
(x+∆x, t)− ∂u

∂x
(x, t)

∆x
(5)

The approximations in (5) become better and better as ∆x becomes smaller and
smaller. At the limit (∆x → 0), we obtain

ρ
∂2u

∂t2
(x, t) = T

∂2u

∂x2
(x, t).(6)

Finally, we divide in (6) by ρ and set c =

√
T

ρ
to rewrite the equation as

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t).(7)

Equation (7) is known as the one-dimensional wave equation. The units of the
constant c are

[c] = ([T ]/[ρ])
1/2

= (Force/Density)
1/2

=

(
(Mass)· (Length/Time2)

Mass/Length

)1/2

=
Length

Time

Hence c has the units of velocity and it is called the wave’s speed.

Remark 1. We can interpret c as the speed with which the crest of the wave
travels horizontally (the points on the string travel vertically and their velocity is
not c).

Remark 2. Assume that the string is not homogeneous so that the density ρ and
the magnitude of tension force T depend on x. In this case the wave equation takes
the form

ρ(x)
∂2u

∂t2
(x, t) =

∂

∂x

(
T (x)

∂u

∂x
(x, t)

)
or equivalently

∂2u

∂t2
(x, t) = c(x)2

∂2u

∂x2
(x, t) +

T ′(x)

ρ(x)

∂u

∂x
(x, t).

Remark 3. If for the homogeneous string the damping forces are not neglected,
then the new wave equation might take the form

∂2u

∂t2
(x, t) + α

∂u

∂t
(x, t) = c2

∂2u

∂x2
(x, t) .
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Remark 4. If the homogeneous string is subject to an external force, then the
standard wave equation (7) becomes

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) + F (x, t) .

Remark 5. The general 1-dimensional wave equation in which many parameters
are not neglected has the form

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) + α

∂u

∂x
(x, t) + β

∂u

∂t
(x, t) + γu(x, t) + F (x, t) ,

in which the coefficients might depend on x and t.

2. The Two-Dimensional Wave Equation

Consider a homogeneous, well stretched, and flexible membrane whose boundary
is held fixed in the (x, y)-plane. As with the case of the string, we assume that the
tension force is the dominant force governing the vibrations. We also assume that
the vibrations vertical and small compared to the size of the membrane. Our aim
is to construct a model for the vertical displacement function.

Let u(x, y, t) represents the vertical displacement at time t of the point (x, y) of
the membrane. Consider a small rectangular element of the membrane ABCD that
corresponds to the points (x, y), (x+∆x, y), (x+∆x, y+∆y), and (x, y+∆y). We
assume that this portion of the membrane has a vertical motion under the action
of the tension forces (see Figure 3). As in the case of the string, the flexibility of

A 

B 

C 

D 

Figure 3. Element ABCD of the membrane at time t subject to
tension forces on the edges

the membrane implies that the tension T⃗ (x, y, t) has constant magnitude T at each

point of the membrane and that T⃗ is tangent to the surface. Since we are dealing
with small vibrations, then we can assume that at each time t and at each point the
angle θ between the the normal to the surface and the z-axis is close to 0 (which
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is the same as the angle between the tangent space and the horizontal plane). By
using the linear approximation sin θ ≈ tan θ, similar arguments as those used for
the string, imply that the total (vertical force) F acting on the element ABCD can
be approximated as follows:

F ≈ T

[
∆y

(
∂u

∂x
(x+∆x, y, t)− ∂u

∂x
(x, y, t)

)
+

+ ∆x

(
∂u

∂y
(x, y +∆y, t)− ∂u

∂y
(x, y, t)

)]
(8)

We can also use Newton’s second law to express F as

F ≈ ∆m
∂2u

∂t2
(x, y, t) ≈ ρ∆x∆y

∂2u

∂t2
(x, y, t),(9)

where ∆m ≈ ρ∆x∆y denotes the mass of the rectangular element ABCD and
with ρ the surface mass density of the membrane. After substituting in (8), the
expression for F given in (9) and dividing by ∆x∆y, we obtain

∂2u

∂t2
(x, y, t) ≈ T

 ∂u

∂x
(x+∆x, y, t)− ∂u

∂x
(x, y, t)

∆x
+

+

∂u

∂y
(x, y +∆y, t)− ∂u

∂y
(x, y, t)

∆y

(10)

The approximations in (10) become better and better as ∆x and ∆y become smaller
and smaller. At the limit we obtain the two-dimensional wave equation

∂2u

∂t2
(x, y, t) = c2

(
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

)
(11)

where c2 = T/ρ is the wave’s speed.

3. The Three-Dimensional Wave Equation

With the use of the notation ∆ for the Laplace operator, the wave in equation
in one, two, or three space variables takes the form

utt = c2∆u .

We have illustrated the wave equation in connection with the vibrations of the string
and of the membrane. But the equation models many other physical phenomena
that includes acoustic waves, electrical circuits, quantum mechanics in connection
with the Shrödinger’s equation etc.

4. Some Solutions Of The Wave Equation

The followings are solutions of the one-dimensional wave equation utt = c2uxx.

sin(cω1t) sin(ω1x) and cos(cω2t) sin(ω2x),

where ω1 and ω2 are arbitrary real constants. We can interchange any sin with cos
and obtain again a solution. We can multiply any solution by a constant or add
any two solutions and the result is again a solution of the wave equation (verify
these claims).
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For the two dimensional wave equation utt = c2∆u, here are some solutions

sin(c
√
ω2
1 + ω2

2 t) sin(ω1x) cos(ω2y)

with ω1, ω2 constants. Again we can produce more solutions by interchanging any
sine function with cosine and vice versa and by adding or multiplying solutions by
constants.

5. Boundary Value Problems For The Wave Equation

We list some typical BVP dealing with the wave equation.

5.1. Example 1. A flexible string of length L is stretched horizontally so that one
end is at x = 0 and the other at x = L. While the ends are held fixed, the string
is moved vertically from equilibrium so that the point x is displaced by f(x) (with
f(x) > 0 or f(x) < 0 depending whether the point x is moved above or below its
equilibrium position). Hence the shape of the string is given by the graph of f .
The string is then released from rest (meaning that when the string is released each
point of the string has 0 velocity). Let u(x, t) denotes the (vertical) displacement

Initial Shape of String
given by graph of f(x) 

Position of string at equilibrium 

0 L 

Figure 4. String displaced from equilibrium and released from rest

at time t of point x. This function satisfies the followings:

• the PDE (wave equation): utt(x, t) = c2uxx(x, t)
• the initial position: u(x, 0) = f(x)
• the initial velocity: ut(x, 0) = 0
• the left ends are fixed: u(0, t) = 0 and u(L, t) = 0

The formal BVP for u can be written as:

utt(x, t) = c2uxx(x, t) 0 < x < L, t > 0;
u(x, 0) = f(x) 0 < x < L;
ut(x, 0) = 0 0 < x < L;
u(0, t) = 0 t > 0;
u(L, t) = 0 t > 0;

5.2. Example 2. Start with the string of Example 1 at equilibrium (sitting hor-
izontally). Suppose that at the initial time each point x of the string is given
a velocity g(x) (with g(x) positive or negative depending whether the velocity is
directed up or down). This time the displacement u(x, t) satisfies the followings:

• the PDE (wave equation): utt(x, t) = c2uxx(x, t)
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0 L 

Initial velocity g(x)
positive here 

Initial velocity g(x)
negatve here 

Figure 5. String struck from equilibrium with an initial velocity g(x)

• the initial position: u(x, 0) = 0
• the initial velocity: ut(x, 0) = g(x)
• the left ends are fixed: u(0, t) = 0 and u(L, t) = 0

The formal BVP for u can be written as:

utt(x, t) = c2uxx(x, t) 0 < x < L, t > 0;
u(x, 0) = 0 0 < x < L;
ut(x, 0) = g(x) 0 < x < L;
u(0, t) = 0 t > 0;
u(L, t) = 0 t > 0;

5.3. Example 3. The combination of both previous experiments, the string is
initially moved from the equilibrium position by f(x) and each point is given an
initial velocity g(x) The formal BVP for the displacement u is:

0 L 

Figure 6. String with initial position f(x) and initial velocity g(x)

utt(x, t) = c2uxx(x, t) 0 < x < L, t > 0;
u(x, 0) = f(x) 0 < x < L;
ut(x, 0) = g(x) 0 < x < L;
u(0, t) = 0 t > 0;
u(L, t) = 0 t > 0;

5.4. Example 4. Suppose this time that the right end point of the string is not
held fixed but is allowed to move vertically in such a way that the shape of the
string stays always horizontal at the end x = L. This can be realized by attaching
the end of the string to a mechanical apparatus (that contain bearings or springs).
Now the displacement u(L, t) is not zero anymore. But, the condition that the right
end stick out from the mechanical device in the horizontal direction means that the
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0 L 

Right end sticking 
out horizontally 

Figure 7. String with left end fixed and right end attached to a
mechanical device that allows it to move vertically

slope of the tangent line to the string is 0 at x = L. That is ux(L, t) = 0 for all
time t > 0. The BVP for u becomes

utt(x, t) = c2uxx(x, t) 0 < x < L, t > 0;
u(x, 0) = f(x) 0 < x < L;
ut(x, 0) = g(x) 0 < x < L;
u(0, t) = 0 t > 0;
ux(L, t) = 0 t > 0;

5.5. Example 5. Consider a 2×1 rectangular membrane. Suppose that the mem-
brane is flexible and is well stretched on the (x, y)-plane so that it occupies the
rectangle [0, 2] × [0, 1]. Assume that its boundary is held fixed throughout. At
time t = 0 the membrane is displaced from its equilibrium position so that each
point (x, y) is displaced vertically by the amount xy(x− 1)(2− x)(y − 1) and then
it is released from rest. Let u(x, y, t) denotes the vertical displacement at time t of

Figure 8. A rectangular membrane displaced from its equilibrium position

the point (x, y). The function u satisfies:

• the PDE (2-D wave equation): utt = c2(uxx + uyy)
• the initial position: u(x, y, 0) = xy(x− 1)(2− x)(y − 1)
• the initial velocity: ut(x, y, 0) = 0
• the boundary is fixed: u(0, y, t) = u(2, y, t) = u(x, 0, t) = u(x, 1, t) = 0
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As a formal BVP, we can write the problem for u as

utt(x, t) = c2∆u(x, y, t) 0 < x < 2, 0 < y < 1, t > 0;
u(x, y, 0) = xy(x− 1)(2− x)(y − 1) 0 < x < 2, 0 < y < 1
ut(x, y, 0) = 0 0 < x < 2, 0 < y < 1
u(0, y, t) = u(2, y, ) = 0 0 < y < 1, t > 0;
u(x, 0, t) = u(x, 1, t) = 0 0 < x < 2, t > 0;

6. The D’Alembert’s Solution Of The Wave Equation

We start with an observation, let F (s) be a twice continuously differentiable
function of one real variable (s ∈ R). Form the function F , form the functions of
two variables u+(x, t) and u−(x, t) defined in R2 by

u+(x, t) = F (x− ct) and u−(x, t) = F (x+ ct).

Lemma The functions u+ and u− are solutions of the wave equation

utt(x, t) = c2uxx(x, t).

Proof. By using the chain rule, we have

u+
t (x, t) = −cF ′(x− ct), u+

x (x, t) = F ′(x− ct)

and

u+
tt(x, t) = (−c)2F ′′(x− ct), u+

xx(x, t) = F ′′(x− ct)

From these it follows that u+
tt = c2u+

xx. The same argument applies to u−.

6.1. The string with infinite length. Consider a long string (for practical pur-
poses, we can assume that the string has an infinite length so that for now we will
not worry about the end points). Suppose that the string is perturbed from its
(horizontal) equilibrium position so that its new shape is that of the graph of the
function F (see figure). Then, at time t = 0, the string is released from rest from
this position. We would like to find the shape of the string at each time t > 0.
Hence we would like to find the solution of the following

Figure 9. A long string with a small perturbation

Problem. Solve the initial value problem

utt(x, t) = c2uxx(x, t) x ∈ R, t > 0

u(x, 0) = F (x) ut(x, 0) = 0 x ∈ R.

Note that both functions u± solve the PDE and the initial position

u+(x, 0) = u−(x, 0) = F (x± 0) = F (x).

However, they do not satisfy the initial velocity since

u+
t (x, t) = −cF ′(x− ct), u−

t (x, t) = cF ′(x+ ct)
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and at t = 0, we have

u+
t (x, 0) = −cF ′(x), u−

t (x, 0) = cF ′(x)

which are not 0 (unless F is constant). To circumvent this, we use the fact that a
linear combination of two solutions of the wave equation is again a solution. The
average u of u+ and u− is again a solution:

u(x, t) =
u+(x, t) + u−(x, t)

2
.

It clearly satisfies the initial position and the initial velocity since

ut(x, 0) =
u+
t (x, 0) + u−

t (x, 0)

2
=

−cF ′(x) + cF ′(x)

2
= 0.

We have therefore found the solution of the initial value problem as

u(x, t) =
F (x− ct)

2
+

F (x+ ct)

2
.

The function u can be interpreted as the sum of the two waves u+/2 traveling to
the right with speed c and u−/2 traveling to the left with speed c. Indeed at a any
time t = t0, the graph of u+(x, t0) is obtained from that of F by a translation to
the right of ct0 units while that of u−(x, t0) is just the translation of that of F by
ct0 units to the left.

D t=0 

t=c 

t=2c 

a 

a 

a 

Figure 10. The perturbation F of the string spreads for t > 0 as
two traveling waves u+/2 and u−/2 with speed c

Remark. Consider a point a on the string so that F (s) = 0 for s in an interval
around a. Hence at time t = 0 the string is not disturbed around x = a. Let D
be the distance from a to the nearest point on the string that is disturbed at time
t = 0 (see figure). The previous discussion implies that the first time a feels the
disturbance and is displaced from equilibrium is at time t0 = D/c.

6.2. The string with finite length. The above ideas can be used to find the
explicit solution for the BVP associated with the vibration of a string of finite
length. Consider the following problem where L = 20 units.

utt(x, t) = c2uxx(x, t) 0 < x < 20, t > 0
u(x, 0) = F (x), ut(x, 0) = 0 0 < x < 20
u(0, t) = 0, u(20, t) = 0 t > 0.
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We take the initial position to be given by a bump function at middle of the string:

F (x) =

{
((x− 10)2 − 1)2 if 9 ≤ x ≤ 11
0 elsewhere

To take advantage of the above ideas, let us think that this real string is a portion

0 9 11 20 

Figure 11. Initial displacement of the string

of an infinite (virtual) string. We are going to extend the function F which is
defined over the interval [0, 20] into a function defined over the whole real line
R. First we extend it as an odd function to the interval [−20, 20] and then, we
extend it to the whole real line as a periodic function. Let then Fodd to be the odd
extension of F to [−20, 20]. Hence

Fodd(x) = F (x) for 0 ≤ x ≤ 20 and
Fodd(x) = −F (−x) for − 20 ≤ x ≤ 0.

whose graph is given below. Now, we extend Fodd as a periodic function with period

Real string 

Virtual string 

Figure 12. Graph of Fodd

40 to the whole real line as a function F̂ . The graph of F̂ is given below Hence, F is

0 10 

−10 

−30 

30 

Figure 13. Graph of F̂

defined on [0, 20], Fodd on [−20, 20], and F̂ on (−∞ , ∞). The following relations
hold

F̂ (s) = F (s) ∀s ∈ [0, 20]

F̂ (s) = −F̂ (−s) and F̂ (s± 40) = F̂ (s) ∀s ∈ R.
We know from the previous case that the function û(x, t) defined by

û(x, t) =
F̂ (x− ct) + F̂ (x+ ct)

2

solves the initial value problem

ûtt(x, t) = c2ûxx(x, t) ∀x ∈ R t > 0,

û(x, 0) = F̂ (x) and ût(x, 0) = 0 ∀x ∈ R .
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Now consider only the x’s that are on the real string 0 ≤ x ≤ 20, and define u to
be just the restriction of û to those x’s. That is,

u(x, t) = û(x, t) =
F̂ (x− ct) + F̂ (x+ ct)

2
x ∈ [0, 20] t > 0.

We claim that in addition to the PDE and the two initial condition, this function
u satisfies also the two endpoints conditions. Indeed, at the left end we have

u(0, t) =
F̂ (−ct) + F̂ (ct)

2
= 0 (because F̂ is odd).

To verify the condition at the right endpoint, we use the periodicity of F̂ and its
oddicity (?).

F̂ (20− ct) = F̂ (20− ct− 40) = F̂ (−20− ct) = −F̂ (20 + ct)

Hence

u(20, t) =
F̂ (20− ct) + F̂ (20 + ct)

2
= 0.

The following figure illustrates the shape of the string at various times and in
particular the periodicity of its vibrations. The period of vibration is

T =
2× Length of string

Wave′s speed
=

2L

c
.

In our case, the period is 40/c.

time t=0

time t=8/c

time t=10/c, 1/4−th of period of vibrations

time t=11/c

time t=20/c, half of period of vibrations

time t=22/c

0 10 20 

Figure 14. Snapshots of the vibrating string
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Remark Note how the traveling waves, one to the left the other to the right cancel
the effect of each other at the end points x = 0 and x = 20

7. Exercises

In exercises 1 to 6, write a BVP for the small vertical vibrations of a homogeneous
string. Assume that the wave’s speed is c, the length of the string is L and satisfies
the following conditions:
Exercise 1. Both ends of the string are fixed on the x-axis, the initial position of
the string is given by f(x) = sin(5πx/L) and is released from rest (plucked string).
Take L = 20 and c = .5.

Exercise 2. Same characteristics as in exercise 1 but this time while the string is
siting horizontally at equilibrium, it is struck (at time 0) with an initial velocity
given by g(x) = x(x− 1) sin(πx/L) (struck string).

Exercise 3. Take L = π and c = 2. Both ends of the string are fixed and initially
the string has position given by f(x) = sinx cos 2x and velocity given by g(x) = −1.

Exercise 4. Take L = 2π, c = 2. Suppose that the right end is fixed while the left
end is allowed to move, vertically, in such a way that its vertical displacement at
time t is 0.2 sin(t). The string starts its motion from rest at equilibrium position.

Exercise 5. Same string as in exercise 4. This time suppose that the left end
is fixed while the right end is allowed to move vertically. At the right end, the
displacement at any time t is equal to the slope of the tangent line. Suppose
that the string is set into motion from equilibrium position by a constant velocity
g(x) = 1.

Exercise 6. Same string as in exercise 4. This time suppose that the right end is
fixed while the left end is allowed to move vertically. At the left end, the tangent
line at any time t is horizontal. Suppose that the string is set into motion from rest
with an initial position given by the function f(x) = sin 3x.

Exercises 7 to 10 deal with the small vertical vibrations of a homogeneous mem-
brane. You are asked to write the corresponding BVP.

Exercise 7. The membrane is a square with side π. The boundary is attached in
the (x, y)-plane, the wave’s speed is c = 1. Initially, the membrane position is given
by f(x, y) = e−y sinx sin 2y. The membrane is released from rest.

Exercise 8. The membrane is a rectangle with boundary attached to the (x, y)-
plane. At equilibrium position, the membrane occupies the rectangle [−5, 5] ×
[−3, 3]. Suppose that the membrane is set into motion by striking its center square
[−1, 1]2 by a constant velocity of magnitude 1 (so at time t = 0, each point inside
the small square has velocity 1 while the other points of the membrane outside the
small square have velocity 0). Take c = .5

Exercise 9. The membrane is a circular disk with radius 10 and with boundary
fixed on the (x, y)-plane (take c = 2 here). The initial velocity of the membrane is
0 and its initial position is given in polar coordinates by the (bump) function

f(r, θ) =

{
e−r(0.1− r) if 0 ≤ r ≤ 0.1
0 if 0.1 < r ≤ 10.
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Exercise 10. The membrane is a circular ring with inner radius 1 and outer radius
2 and c = 1. Suppose that the outer radius is fixed in the (x, y)-plane but the inner

Inner circle boundary 
allowed to move  

Outer circle boundary fixed  

Figure 15. Membrane in the shape of a ring

radius is allowed to move vertically in such a way that at time t, each point of
the inner radius has a displacement given by the function e−0.001t sin t. The initial
position and velocity are 0 (see figure).

Exercise 11. The vertical displacements of a string were found to be given by the
function u(x, t) = sin 3t cos(x/2). What is the corresponding wave’s speed c?

Exercise 12. The vertical displacements of a membrane were found to be given
by the function

u(x, y, t) = cos(15t) sin(3x) cos(4y).

What is the corresponding wave’s speed c?

Exercise 13. A string of length L = 10 and with fixed end on the horizontal axis
is set into vertical motion by displacing it from its equilibrium position and then
released from rest. The initial displacement is given by the function

f(x) =

{
1 if 4 < x < 6;
0 if 0 ≤ x ≤ 4 or 6 ≤ x ≤ 10.

If c =
√
2, find the period of oscillations of the string. Use D’Alembert’s method to

find (and graph) the shape of the string at the following times t = 1, 3, 5, 7, 9, 10.

Exercise 14. (D’Alembert’s method for the struck string). Consider the BVP

utt = c2uxx 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0 t > 0,
u(x, 0) = 0 ut(x, 0) = g(x) 0 < x < L.

We are going to construct a solution for this BVP. First, let godd be the odd
extension of the function g to the interval [−L, L]. Second, let ĝ be the periodic
extension of godd to R. Hence, ĝ has period 2L. Third, let G be an antiderivative
of ĝ. That is, G′(s) = ĝ(s), for every s ∈ R and in particular, G′(s) = g(s) if
0 ≤ s ≤ L.

Verify that the function

u(x, t) =
G(x+ ct)−G(x− ct)

2c

solves the BVP.
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Exercise 15. Use the D’Alembert’s method of exercise 15 to illustrate the shape
of the struck string if

g(x) = cosx L = π/2, c = .5

Find (graph) the shape of the string at the following times t = 0, π/4, π/2, π, 2π.


