
THE LAPLACE EQUATION

The Laplace (or potential) equation is the equation

∆u = 0.

where ∆ is the Laplace operator

∆ =
∂2

∂x2
in R

∆ =
∂2

∂x2
+

∂2

∂y2
in R2

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
in R3

The solutions u of the Laplace equation are called harmonic functions and play
an important role in many areas of mathematics. The Laplace operator is one of
the most important operators in mathematical physics. It is associated with the
gravitational and electrical fields. For instance, we know from Newton’s law of
universal gravitation that two points A and B with masses MA and MB attract

each other with forces
−→
F A and

−→
F B as in figure, each force with magnitude

F =
GMAMB

AB2

where G is the universal gravitational constant and AB is the distance from A to

F
A

F
BA 

 B

Figure 1. Mass at A exert a force F⃗A on the mass at B

B. As vectors these forces are opposite and we have

−→
FA = F

−−→
BA

AB
and

−→
FB = F

−−→
AB

AB

Suppose that A is located at the origin of the (x, y, z)-space and that B has a

unit mass (MB = 1) and it is located at the point (x, y, z), then the force
−→
F (x, y, z)

with which A will attract B is

−→
F = C

(
x√

x2 + y2 + z2
3 i⃗+

y√
x2 + y2 + z2

3 j⃗ +
z√

x2 + y2 + z2
3 k⃗

)
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where the constant C is C = −GMA. This vector-valued function
−→
F is the gravi-

tational field generated by the point mass A.
The function Φ (which is real valued) and defined by

Φ(x, y, z) =
−C√

x2 + y2 + z2
= C(x2 + y2 + z2)−1/2

satisfies
∂Φ

∂x
= Cx(x2 + y2 + z2)−3/2 =

Cx√
x2 + y2 + z2

3

∂Φ

∂y
= Cy(x2 + y2 + z2)−3/2 =

Cy√
x2 + y2 + z2

3

∂Φ

∂z
= Cz(x2 + y2 + z2)−3/2 =

Cz√
x2 + y2 + z2

3

Hence,
−→
F (x, y, z) =

−−−−→
gradΦ(x, y, z).

The function Φ is called a potential of the vector field
−→
F . Now, we compute the

second partial derivatives of Φ. We use the notation r =
√
x2 + y2 + z2. We have

∂2Φ

∂x2
= C(r−3 − 3x2r−5)

∂2Φ

∂y2
= C(r−3 − 3y2r−5)

∂2Φ

∂z2
= C(r−3 − 3z2r−5)

When we add the three partial derivatives, we obtain

∆Φ = C(3r−3 − 3(x2 + y2 + z2)r−5) = 0 since r2 = x2 + y2 + z2 .

This means that the potential Φ satisfies the Laplace equation. This is the reason
why the Laplace equation is also referred to as the potential equation.

If we have N point masses A1 · · · AN , each generates a gravitational field
−→
Fi,

(i = 1, · · · N) and each field has a potential Φi, the resulting field of all the mass
points is the sum of the fields and the potential is the sum of the potentials1 :

N∑
i=1

−→
Fi =

N∑
i=1

−−−−→
gradΦi.

1. Some BVP For The Laplace Equation

The following are typical problems associated with the Laplace operator.

1.1. The Dirichlet Problem. The problem is to find a harmonic function u inside
a domain D so that the values of u are prescribed on the boundary ∂D of D (u = f
is given on the boundary ∂D).

1Suppose that a body occupies a region R in the (x, y, z)-space and has mass density ρ(x, y, z)

at the point (x, y, z). Then the body generates a gravitational field
−→
F whose potential function

Φ is given by the following integral

Φ(x, y, z) =

∫∫∫
R

ρ(ξ, η, ζ)dξdηdζ√
(x− ξ)2 + (y − η)2 + (z − ζ)2
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∆ u=0

Find a function u so that

on the boundary ∂ D

D inside the domain D 

u=f 

Figure 2. The Dirichlet Problem

1.2. The Neumann Problem. The problem is to find a harmonic function u

inside the domain D so that the normal derivatives of u, (i.e.
∂u

∂η
) are prescribed

on the boundary (
∂u

∂η
= g on ∂D.) Recall that the normal derivative at a point

∆ u=0

Find a function u so that

on the boundary ∂ D

∂ u/∂η=g

D inside the domain D 

Exterior unit normal 
vectors 

Figure 3. The Neumann Problem

(x, y) on the boundary ∂D is

∂u

∂η
(x, y) =

−−−→
gradu(x, y) · −→n (x, y)

where −→n (x, y) is the exterior unit normal at the point (x, y).

1.3. The Problem with mixed boundary conditions. The problem is to find
a harmonic function u inside the domain D so that on the boundary ∂D it satisfies

au+ b
∂u

∂η
= h, where a, b, and h are given.
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2. Steady-State Temperature Problems

The above problems for the Laplace equation are illustrated by the steady-state
solutions of the 2-D and 3-D heat equation. By a steady-state function u, we mean
a function that is independent on time t. Thus, ut ≡ 0. In particular if u satisfies
the heat equation ut = ∆u and u is steady-state, then it satisfies

∆u = 0.

2.1. Example 1. Write the BVP for the steady-state temperature u(x, y) in a 1×2
rectangular plate if the bottom horizontal side is kept at 00, the top horizontal side
at 1000, the left vertical side at −100 and the right vertical side at 2000.

∆ u =0

u=100 

u=−10 u=200 

u=0 

Figure 4. A Dirichlet problem for the steady-state temperature

This is an example of a Dirichlet problem. We can write it as

∆u(x, y) = 0, 0 < x < 1, 0 < y < 2;
u(x, 0) = 0, u(x, 2) = 100, 0 < x < 1;
u(0, y) = −10, u(1, y) = 200, 0 < y < 2.

2.2. Example 2. This time we have steady-state temperature in a 1×2 rectangular
plate. Assume that the boundary conditions are as follows: the bottom and right
sides are insulated and left and top sides are kept at constant temperatures of 0
and 100 degrees, respectively.

The BVP can be written as

∆u(x, y) = 0, 0 < x < 1, 0 < y < 2;
∂u

∂y
(x, 0) = 0, u(x, 2) = 100, 0 < x < 1;

u(0, y) = 0,
∂u

∂x
(1, y) = 200, 0 < y < 2.

2.3. Example 3. Consider a plate in the shape of a quarter of a circle with radius
1. Suppose that the temperature is steady-state, the circular side is insulated, one
radial side is kept at 100 degrees and the other at 50 degrees.
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∆ u =0

u=100 

u=0 Insulation 

Insulation 

Figure 5. A mixed problem for the steady-state temperature

Insulation 

u=100 

u=50 

Figure 6. A BVP for the steady-state temperature in a circular domain

The BVP can be written as

∆u(x, y) = 0, 0 < x2 + y2 < 1; x > 0, y > 0
u(x, 0) = 50, 0 < x < 1;
u(0, y) = 100, 0 < y < 1;
∂u

∂η
(x, y) = 0, x2 + y2 = 1, x > 0, y > 0.

We express the normal derivative
∂u

∂η
in terms of

∂u

∂x
and

∂u

∂y
by using

∂u

∂η
=

−−−→
gradu · n⃗ ,

where n⃗ is the unit normal vector to the unit circle. For a circle x2 + y2 = R2 the
unit normal at point (x0, y0) is

n⃗(x0, y0) =
x0

R
i⃗+

y0
R
j⃗.

In our case R = 1, so that at each point (x, y) on the boundary (x2 + y2 = 1) the
unit normal vector is just.

n⃗(x, y) = x⃗i+ yj⃗.

Hence,
∂u

∂η
(x, y) = x

∂u

∂x
(x, y) + y

∂u

∂y
(x, y)
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. The BVP can then be rewritten as

∆u(x, y) = 0, 0 < x2 + y2 < 1; x > 0, y > 0
u(x, 0) = 50, 0 < x < 1;
u(0, y) = 100, 0 < y < 1;

x
∂u

∂x
(x, y) + y

∂u

∂x
(x, y) = 0, x2 + y2 = 1, x > 0, y > 0.

Remark Since the domain is circular, this problem is in fact better suited for polar
coordinates. We will revisit these problems.

3. The Laplacian In Polar, Cylindrical, And Spherical Coordinates

For BVP that deal with non rectangular shaped domains, it is useful to use coor-
dinates systems other than the rectangular coordinates. In particular, for cylindri-
cally or spherically shaped domains, the appropriate coordinates are the cylindrical
and spherical coordinates. To use these coordinates, it is necessary to express the
Laplace operator ∆ in these coordinates.

3.1. The 2D-Laplacian in polar coordinates. First recall that a point p ∈ R2

can be expressed in rectangular coordinates as (x, y) or in polar coordinates as (r, θ)

θ

P 

x 

y 

r 

Figure 7. Rectangular and polar coordinates

The relations between these coordinates is given by

x = r cos θ and y = r sin θ

and

r2 = x2 + y2 and tan θ =
y

x
or cot θ =

x

y

Let u be a function defined in the the plane R2. Then u can be expressed in
terms of the rectangular coordinates as u(x, y) or in terms of the polar coordinates
u(r, θ). Its Laplacian ∆u is also a function in R2. We know how to express it in
rectangular coordinates:

∆u(x, y) = uxx(x, y) + uyy(x, y).

We would like to express ∆u in polar coordinates only (so that x and y will not
appear at all but only r and θ are involved). For this we need to use the chain rule
to relate the first and second partial derivatives of u given in terms of x, y to their
counterparts in terms of r and θ.
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By differentiating r2 with respect to x and y, we obtain

2rrx = 2x ⇒ rx =
x

r
= cos θ

2rry = 2y ⇒ ry =
y

r
= sin θ

Then

rxx =
r − xrx

r2
=

r − x
x

r
r2

=
r2 − x2

r3
=

y2

r3
=

sin2 θ

r

ryy =
r − yry

r2
=

r − y
y

r
r2

=
r2 − y2

r3
=

x2

r3
=

cos2 θ

r

Now we differentiate tan θ with respect to x and y

(tan θ)x = (sec2 θ) θx = − y

x2
⇒ θx = −y cos2 θ

x2
= − y

r2
= − sin θ

r

(tan θ)y = (sec2 θ) θy =
1

x
⇒ θy =

cos2 θ

x
=

x

r2
=

cos θ

r

Then for the second partial derivatives, we get

θxx =
(
− y

r2

)
x
=

2yrrx
r4

=
2y

x

r
r3

=
2xy

r4
=

2 sin θ cos θ

r2

θyy =
( x

r2

)
y
= −2xrry

r4
= −

2x
y

r
r3

= −2xy

r43
= −2 sin θ cos θ

r2

Now we go back to a function u defined in the plane and relate its derivatives
from one system of coordinates to the other by using the chain rule. We have

ux = urrx + uθθx and uy = urry + uθθy.

For the second derivatives, we have

uxx = (ux)x = (urrx + uθθx)x = (ur)xrx + (uθ)xθx + urrxx + uθθxx
= [(ur)rrx + (ur)θθx]rx + [(uθ)rrx + (uθ)θθx]θx + urrxx + uθθxx

Hence,

uxx = urr(rx)
2 + 2urθrxθx + uθθ(θx)

2 + urrxx + uθθxx

Similarly, we have

uyy = urr(ry)
2 + 2urθryθy + uθθ(θy)

2 + urryy + uθθyy.

By adding these last relations, we obtain

∆u = uxx + uyy

= urr((rx)
2 + (ry)

2) + 2urθ(rxθx + ryθy)
+uθθ((θx)

2 + (θy)
2) + ur(rxx + ryy) + uθ(θxx + θyy)

By using the formulas given above for the derivatives of r and θ, we get

(rx)
2 + (ry)

2 = 1, rxθx + ryθy = 0, rxx + ryy =
1

r
,

(θx)
2 + (θy)

2 =
1

r2
, and θxx + θyy = 0.
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With these, the expression for ∆u becomes

∆u = uxx + uyy = urr +
1

r
ur +

1

r2
uθθ

The right expression contains only the variables r and θ. We have established the
following

Proposition 3.1. The Laplace operator in polar coordinates is:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂θ2
.

Example Consider a plate in the shape of a 450-sector of a ring with inner radius 1
and outer radius 2. Suppose that the steady state temperature in the plate satisfies
the boundary conditions as shown in the figure. To write the BVP for the steady

u=100r u=5θ

∆ u =0

Insulation 

n 

Figure 8. Steady-state temperature in a 450 sector

state temperature, we need to

• write the PDE inside the sector (Laplace equation)

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0, 1 < r < 2, 0 < θ < π/4.

• write the specified temperature on the slanted edge

u(r, π/4) = 100r 1 < r < 2.

• write the specified temperature on the outer circular side

u(2, θ) = 5θ, 0 < θ < π/4.

• write the insulation condition on the horizontal edge
• write the insulation condition on the inner circular side

The last two condition need an explanation. Recall that insulating a surface means
that the normal derivative of the temperature u is 0. Now for the horizontal side,
it means that uy(x, 0) = 0. But, we need to write this in polar coordinates. At
each point (x, 0), we have then

0 = uy = urry + uθθy

From the previous calculation we have ry = y/r and so ry = 0 when y = 0 (and of
course r > 0). Also, θy = x/r2 ̸= 0 since x > 1. Hence, the insulation condition on
the horizontal side is simply uθ(r, 0) = 0 for 1 < r < 2.
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The last condition is
∂u

∂η
= 0 on the inner circular side. Here, ∂u

∂η is the normal

derivative. The outer unit normal to the inner circle is simply n⃗ = −(1/r)(x⃗i+yj⃗).
Hence,

∂u

∂η
=

−−→
gradu · n⃗ = −1

r
(xux + yuy)

= −1

r
(x(urrx + uθθx) + y(urry + uθθy))

= −xrx + yry
r

ur −
xθx + yθy

r
uθ

From the above calculation, we have

xrx + yry
r2

= 1, and xθx + yθy = 0.

All of this simply means that in polar coordinates
∂u

∂η
= ur. Therefore, the insula-

tion of the inner circle reads

ur(1, θ) = 0, 0 < θ < π/4.

Now, we can write the BVP as

urr(r, θ) +
1
rur(r, θ) +

1
r2uθθ(r, θ) = 0, 1 < r < 2, 0 < θ < π/4;

u(r, π/4) = 100r, 1 < r < 2;
u(2, θ) = 5θ, 0 < θ < π/4;
uθ(r, 0) = 0, 1 < r < 2;
ur(1, θ) = 0, 0 < θ < π/4.

3.2. The 3-D Laplacian in cylindrical coordinates. Recall that if a point p
in R3 has cartesian coordinates (x, y, z), then its cylindrical coordinates are (r, θ, z)
with r and θ as above:

x = r cos θ, y = r sin θ and z = z.

From the previous calculations, we get the following

θx 
y 

z 

r 

P 

Figure 9. Rectangular and cylindrical coordinates

Proposition 3.2. The expression for the three dimensional Laplacian in cylindrical
coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2



10 THE LAPLACE EQUATION

3.3. The 3-D Laplacian in spherical coordinates. Recall that if a point p in
R3 has cartesian coordinates (x, y, z), then its spherical coordinates are (ρ, θ, ϕ)
(see figure) with

ρ

φ

θ

P 

x 

y 

z 

Figure 10. Rectangular and spherical coordinates

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

We would like to express the Laplacian ∆ in terms of only ρ, θ, and ϕ. This can
be achieved by using the chain rule and so we would need to compute the first
and second partial derivatives ρ, θ, ϕ with respect to x, y, z. This is not difficult to
do, but there is a more economical (just a bit more economical) way to reach the
same result by using the transition from cylindrical (r, θ, z) to spherical coordinates
(ρ, θ, ϕ) instead of going from rectangular to spherical. The transition from these
systems of coordinates is given by

r = ρ sinϕ, θ = θ, z = ρ cosϕ

and
ρ2 = r2 + z2, θ = θ, tanϕ =

r

z
.

Notice that the coordinate θ is the same in both systems and so θr = θϕ = 0. This
is why it is a little bit easier to use this transition.

From the previous section, we know the expression of ∆ in cylindrical coordi-
nates. The action of ∆ on a function u is:

∆u = urr +
1

r
ur + uzz +

1

r2
uθθ.

We need therefore to express ur, urr, and uzz in terms of the spherical variables.
By the chain rule, we have the following

ur = uρρr + uϕϕr (no θ involved !);
uz = uρρz + uϕϕz;
urr = (uρ)rρr + (uϕ)rϕr + uρρrr + uϕϕrr

= (uρρρr + uρϕϕr) ρr + (uϕρρr + uϕϕϕr)ϕr + uρρrr + uϕϕrr so
urr = uρρ(ρr)

2 + 2uρϕρrϕr + uϕϕ(ϕr)
2 + uρρrr + uϕϕrr

uzz = uρρ(ρz)
2 + 2uρϕρzϕz + uϕϕ(ϕz)

2 + uρρzz + uϕϕzz

From these, we get then

urr +
1
rur + uzz = uρρ

(
ρr

2 + ρz
2
)
+ 2uρϕ (ρrϕr + ρzϕz) + uϕϕ

(
ϕr

2 + ϕz
2
)

+uρ

(
ρrr + ρzz +

1
rρr
)
+ uϕ

(
ϕrr + ϕzz +

1
rϕr

)
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Now we express the terms between parentheses in terms of spherical coordinates.
We have,

ρr = sinϕ, ρz = cosϕ, ρrr =
cos2 ϕ

ρ
, ρzz =

sin2 ϕ

ρ
,

ϕr =
cosϕ

ρ
, ϕz = −sinϕρ, ϕrr = −2

sinϕ cosϕ

ρ2
, ϕzz = 2

sinϕ cosϕ

ρ2

We obtain the parentheses terms as

ρr
2 + ρz

2 = 1, ρrϕr + ρzϕz = 0, ϕr
2 + ϕz

2 =
1

ρ2
,

ρrr + ρzz +
1

r
ρr =

2

ρ
, and ϕrr + ϕzz +

1

r
ϕr =

cotϕ

ρ2

This gives then

urr +
1

r
ur + uzz = uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cotϕ

ρ2
uϕ.

To obtain ∆u, need to add the term
1

r2
uθθ. This gives the following

Proposition 3.3. The expression of the Laplacian in spherical coordinates is

∆ =
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

cotϕ

ρ2
∂

∂ϕ
+

1

ρ2 sin2 ϕ

∂2

∂θ2

Example Consider the steady-state temperature in the portion of a spherical shell
contained in the first octant. Assume that that the inner radius is 1 and the outer
radius is 2 and that the boundary conditions are as indicated in the figure. The

Inner surface kept
at 0 degrees 

Outer surface 
insulated       

xz−Side      
insulated 

xy−Side kept      
at 200 degrees 

yz−Side kept   
at 0 degrees
            

x 

y 

z 

Figure 11. Portion of a spherical shell

steady-state temperature u(ρ, θ, ϕ) satisfies

• The Laplace equation inside the solid

uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cotϕ

ρ2
uϕ +

1

ρ2 sinϕ
uθθ = 0

• The xy-face: u = 200
• The yz-face: u = 0
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• The xz-face: uθ = 0
• The inner spherical boundary u = 0
• The outer spherical boundary uρ = 0

The BVP is therefore

uρρ +
2
ρuρ +

1
ρ2uϕϕ + cotϕ

ρ2 uϕ + 1
ρ2 sinϕuθθ = 0 1 < ρ < 2, 0 < θ < π/2, 0 < ϕ < π/2;

u(ρ, θ, π/2) = 200 1 < ρ < 2, 0 < θ < π/2;
u(ρ, π/2, ϕ) = 0 1 < ρ < 2, 0 < ϕ < π/2;
uθ(ρ, 0, ϕ) = 0 1 < ρ < 2, 0 < ϕ < π/2;
u(1, θ, ϕ) = 0 0 < θ < π/2, 0 < ϕ < π/2;
uρ(2, θ, ϕ) = 0 0 < θ < π/2, 0 < ϕ < π/2.

4. Exercises

All of the following exercises deal with the steady-state distribution of the tem-
perature in either 2-dimensional plates or 3-dimensional regions. For each exercise,
write the corresponding BVP.

Exercise 1. A 10 × 20 rectangular plate. The vertical sides are kept at constant
temperatures. The left at 10 degrees and the right at 50 degrees. The horizontal
sides are insulated. (Can you guess the solution for this problem?)

Exercise 2. A 10×20 rectangular plate with boundary conditions as in figure. At
the lower side where there is poor insulation the normal derivative of the tempera-
ture is equal to 0.5 times the temperature.

Insulation 

Poor insulation 

Kept at 10 degrees 

Kept at 20 degrees 

Figure 12. Rectangular plate

Exercise 3. A 1 × 2 × 3 solid rectangular box. with boundary conditions as
indicated in the figure.

Exercise 4. A plate in the shape of a quarter of a disk of radius 10 and with
boundary conditions as indicated in the figure.
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Right face
u=10 Left face

u=−10 

Bottom face
u=0 

Top and back 
faces insulated 

Front face
insulated 

Figure 13. Rectangular box

u=2θ 

Insulation 

u=0 

Figure 14. A quarter of a disk shaped plate

Exercise 5. A plate in the shape of half of a ring with inner radius 1 and outer
radius b, (with b > 1), where the boundary conditions are as indicated in the figure.

Exercise 6. A plate in the shape of a 450-sector of a ring with radii 1 and b, with
b > 1, and where the boundary conditions are as indicated

Exercise 7. A solid cylinder of radius 10 and height 20. The top surface is
insulated, the bottom surface is kept at temperature 20 degrees and the lateral
surface is kept at temperature 100 degrees.

Exercise 8. A solid hollow cylinder (cylindrical shell) with radii 10 and 15 and
with height 20. Assume that the inner lateral surface is insulated, the outer lateral
surface is kept at temperature 100 degrees, the bottom surface is insulated and the
top surface is kept at 50 degrees.

Exercise 9. A solid sphere with radius 10. The top hemisphere is kept at temper-
ature 100 degrees and the lower hemisphere is kept at temperature 0 degrees.
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u=100θ /pi

u=0 u=100 
Insulation 

Figure 15. A half-ring shaped plate

u=100−θ 

Insulation 

u=100 

Figure 16. A 450 sector of a ring shaped plate

Exercise 10. A hollow solid sphere (spherical shell) with radii 1 and 5. The inner
and outer surfaces are kept at temperatures 100 and 50 degrees, respectively. (Can
you guess the temperature distribution?)


