THE LAPLACE EQUATION

The Laplace (or potential) equation is the equation

Au = 0.
where A is the Laplace operator
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The solutions u of the Laplace equation are called harmonic functions and play
an important role in many areas of mathematics. The Laplace operator is one of
the most important operators in mathematical physics. It is associated with the
gravitational and electrical fields. For instance, we know from Newton’s law of
universal gravitation that two points A and B with masses M4 and Mpg attract
each other with forces ? 4 and ? B as in figure, each force with magnitude
GMsMp

AB?

where G is the universal gravitational constant and AB is the distance from A to
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FIGURE 1. Mass at A exert a force Fs on the mass at B

B. As vectors these forces are opposite and we have
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Suppose that A is located at the origin of the (z,y, z)-space and that B has a
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unit mass (Mp = 1) and it is located at the point (z,y, z), then the force ?(m, Y, 2)
with which A will attract B is
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where the constant C' is C' = —GM 4. This vector-valued function F is the gravi-
tational field generated by the point mass A.
The function ® (which is real valued) and defined by
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satisfies 50 o
— =Cz(2®+9° + 22)’3/2 = —x3
Ox /22 1 y2 1 22
0P C
— =Cy(z* +y* + 22)_3/2 = —y3
9y N
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37 = CZ((EQ + y2 + 22)_3/2 - —Z3
z Va2 +y? 4 22
Hence,

F(a,y,2) = gradd(a, y, 2).

The function ® is called a potential of the vector field ? Now, we compute the
second partial derivatives of ®. We use the notation r = /22 + y2 + 22. We have

2
—g (12) = C(r=3 — 32%r7%)
856‘1’ -3 2,5
o0z = C(r=° =3y*r—)
8%/<I> -3 2,.-5
ﬁ = C(?" — 3z°r )

When we add the three partial derivatives, we obtain
AD=CB3r 3 =32 +y* +2°)r ) =0 since r?=z?+y*+2°.
This means that the potential ® satisfies the Laplace equation. This is the reason
why the Laplace equation is also referred to as the potential equation.
If we have N point masses A; --- Ay, each generates a gravitational field Fi,

(i =1,--- N) and each field has a potential ®;, the resulting field of all the mass
points is the sum of the fields and the potential is the sum of the potentials® :

N N

Z ?Z = Zgradq)i.
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1. SOME BVP FoORr THE LAPLACE EQUATION

The following are typical problems associated with the Laplace operator.

1.1. The Dirichlet Problem. The problem is to find a harmonic function u inside
a domain D so that the values of u are prescribed on the boundary 9D of D (u = f
is given on the boundary 9D).

1Suppose that a body occupies a region R in the (z,y, z)-space and has mass density p(z, vy, z)
at the point (z,y, z). Then the body generates a gravitational field whose potential function
d is given by the following integral

T,y,2) = p(&,m, ¢)dédndC
P(z,y, 2) ///R N T e CEIoE
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Find a function u so that

u=f
on the boundary 0 D

4

Au=0

inside the domain D

FIGURE 2. The Dirichlet Problem

1.2. The Neumann Problem. The problem is to find a harmonic function u

ou
inside the domain D so that the normal derivatives of u, (i.e. —) are prescribed

I
on the boundary (? = g on 0D.) Recall that the normal derivative at a point
n

Find a function u so that

0 u/on=g
on the boundary 0 D

4

Exterior unit normal
21
vectors

Au=0

inside the domain D

FIGURE 3. The Neumann Problem

(z,y) on the boundary 9D is
ou —
%(x7y) = gradu(m, y) : ﬁ(l’,y)

where 77 (z,y) is the exterior unit normal at the point (z,).
1.3. The Problem with mixed boundary conditions. The problem is to find
a harmonic function u inside the domain D so that on the boundary 9D it satisfies

au + b% = h, where a, b, and h are given.
Ui
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2. STEADY-STATE TEMPERATURE PROBLEMS

The above problems for the Laplace equation are illustrated by the steady-state
solutions of the 2-D and 3-D heat equation. By a steady-state function u, we mean
a function that is independent on time ¢. Thus, u; = 0. In particular if u satisfies
the heat equation u; = Au and u is steady-state, then it satisfies

Au = 0.

2.1. Example 1. Write the BVP for the steady-state temperature u(z,y) ina 1x2
rectangular plate if the bottom horizontal side is kept at 0°, the top horizontal side
at 100°, the left vertical side at —10° and the right vertical side at 200°.

u=100

u=-10 — Au=0 <«— u=200

FIGURE 4. A Dirichlet problem for the steady-state temperature

This is an example of a Dirichlet problem. We can write it as

Au(z,y) =0, 0<zx<l, 0O0<y<2
u(z,0) =0, wu(x,2) =100, 0<z<l;
u(0,y) = —10, u(l,y) =200, 0<y< 2.

2.2. Example 2. This time we have steady-state temperature in a 1 x 2 rectangular
plate. Assume that the boundary conditions are as follows: the bottom and right
sides are insulated and left and top sides are kept at constant temperatures of 0
and 100 degrees, respectively.

The BVP can be written as

Au(z,y) =0, O<z<l, 0<y<2;
a—Z(x,O)zo, u(z,2) =100, 0<az<1;

9
u(0,y) = 0, 8—“(1,y)=200, 0<y<2.

X

2.3. Example 3. Consider a plate in the shape of a quarter of a circle with radius
1. Suppose that the temperature is steady-state, the circular side is insulated, one
radial side is kept at 100 degrees and the other at 50 degrees.
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u=100

u=0 Au=0 <Iﬂsulatlon

Insulation

FIGURE 5. A mized problem for the steady-state temperature

Insulation

/

u=100
FIGURE 6. A BVP for the steady-state temperature in a circular domain

The BVP can be written as
Au(z,y) =0, 0<2’+y><1; 2>0,y>0
u(z,0) =50, 0<z<I;
u(0,y) =100, 0<y<1;

0
—u(x,y) =0, z2°+y2=1,2>0, y>0.
on
0 0 0
We express the normal derivative 2% i1 terms of 22 and 2% by using
on ox Jy
ou  ——
— =gradu - 17,
an

where 77 is the unit normal vector to the unit circle. For a circle 22 4+ y? = R? the
unit normal at point (xg,yo) is
LTo» Yoz

(20, yo) = Ei + ik

In our case R = 1, so that at each point (x,y) on the boundary (22 + 3? = 1) the
unit normal vector is just.

iz, y) = xi +yj.
Hence,

ou Ju Ju
%(x,y) - Sﬂ%(fﬂ,y) +yaiy(xay)
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. The BVP can then be rewritten as

Au(z,y) =0, 0<a22+9y2<1l; 2>0,y>0
u(z,0) = 50, 0<z<l;
u(0,y) = 100, 0<y<l;

0 0
xa*Z(x,y)erafZ(x,y):O, P +y’=1,2>0,y>0.

Remark Since the domain is circular, this problem is in fact better suited for polar
coordinates. We will revisit these problems.

3. THE LAPLACIAN IN POLAR, CYLINDRICAL, AND SPHERICAL COORDINATES

For BVP that deal with non rectangular shaped domains, it is useful to use coor-
dinates systems other than the rectangular coordinates. In particular, for cylindri-
cally or spherically shaped domains, the appropriate coordinates are the cylindrical
and spherical coordinates. To use these coordinates, it is necessary to express the
Laplace operator A in these coordinates.

3.1. The 2D-Laplacian in polar coordinates. First recall that a point p € R?
can be expressed in rectangular coordinates as (z,y) or in polar coordinates as (r, )

FIGURE 7. Rectangular and polar coordinates

The relations between these coordinates is given by
T =rcosf and y=rsinf

and
2

r? =%+ 92 and tanf = 2 or cot = =
€ Y
Let u be a function defined in the the plane R?. Then u can be expressed in
terms of the rectangular coordinates as u(x,y) or in terms of the polar coordinates
u(r,0). Its Laplacian Awu is also a function in R?. We know how to express it in
rectangular coordinates:

We would like to express Au in polar coordinates only (so that x and y will not
appear at all but only 7 and 0 are involved). For this we need to use the chain rule
to relate the first and second partial derivatives of u given in terms of x,y to their
counterparts in terms of r and 6.



THE LAPLACE EQUATION 7

By differentiating r? with respect to = and y, we obtain

x
2rr, =2x = r, = — =cosf
r
2 — — y . .
rry =2y = ryf;fsmﬂ
Then
x
_T—xry P B r? —z? B y? B sin? @
fea =" T2 TT@ T34
_ Y
r—yry, Y. r?—9y? 2% cos?6
T = = = = —_— =
v 72 72 r3 r3 r
Now we differentiate tan 6 with respect to = and y
2 .
. 9 oy _ ycos®f y  sind
(tan ), = (sec 0)933*7P = 0, = — —— = 5=——
1 cos? T cos 6
tanf), = (sec?6) 0, = — = 0, = = =
(tan6), = (sec? 6) 6, = ===

Then for the second partial derivatives, we get

x
Y 2yrry Qy; 2zy  2sinfcosd
x

r2 i r3 4 r2
2.7 .
0 ( T ) 2xrTy r 2xy 2sin 0 cos
vy 72/ y r4 r3 743 r2

Now we go back to a function u defined in the plane and relate its derivatives
from one system of coordinates to the other by using the chain rule. We have

Uy = UrTy + Ul and  uy = u,ry + uply.
For the second derivatives, we have

Ugye = (uw)w = (ur'ra: + U99z)z = (ur>wra: + (ue)mezr + UpTye + U99m
= [(ur)rrw + (ur)eew]rw + [(Ué))ﬂ“m + (Ue)eea;]ex + UpTyy + Ueem

Hence,

Ugy = ur'f<rw)2 + 200730, + u@@(ei)z + UrToe + Ugbao
Similarly, we have

Uyy = Upr (Ty)? + 27y 0y + uga(0y)* + upryy + upby,.
By adding these last relations, we obtain

AU = Ugy + Uyy
= U ((12)2 + (1y)?) + 2upg(rabs + 740,)
+u90((‘9w)2 + (‘%)2) + U (T + Tyy) + ug(Ora + 9yy>

By using the formulas given above for the derivatives of r and 0, we get

1
(Tx)2 + (Ty)2 =1, rz0,+ Tyey =0, Tag +1yy = r’

(0:)>+(0,)? = =, and 0., +0,, =0.
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With these, the expression for Au becomes

1 1
Au = Ugy + Uyy = Upry + ;ur + EUQG

The right expression contains only the variables r and . We have established the
following

Proposition 3.1. The Laplace operator in polar coordinates is:

A= 0? n 10 n 1 0
Cor2  ror r200?°
Example Consider a plate in the shape of a 45%-sector of a ring with inner radius 1
and outer radius 2. Suppose that the steady state temperature in the plate satisfies
the boundary conditions as shown in the figure. To write the BVP for the steady

Insulation

FIGURE 8. Steady-state temperature in a 45° sector

state temperature, we need to

e write the PDE inside the sector (Laplace equation)
1 1
Upr (1,0) + —up(r,0) + —uge(r,0) = 0, 1<r<2 0<6<7/4
r r

e write the specified temperature on the slanted edge
u(r,m/4) = 100r l<r<2.

e write the specified temperature on the outer circular side
u(2,0) = 50, 0<6<m/4

e write the insulation condition on the horizontal edge

e write the insulation condition on the inner circular side

The last two condition need an explanation. Recall that insulating a surface means
that the normal derivative of the temperature u is 0. Now for the horizontal side,
it means that w,(x,0) = 0. But, we need to write this in polar coordinates. At
each point (z,0), we have then

0 =uy = u,ry + ugty

From the previous calculation we have r, = y/r and so r, = 0 when y = 0 (and of
course r > 0). Also, 8, = z/r? # 0 since z > 1. Hence, the insulation condition on
the horizontal side is simply ug(r,0) =0 for 1 < r < 2.
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ou
The last condition is — = 0 on the inner circular side. Here, g—;‘ is the normal

on
derivative. The outer unit normal to the inner circle is simply @ = —(1/r)(xi + 7).
Hence,
ou —_ 1
— =gradu -7 = ——(Tuy + yuy)
an ) r
=- (@(urry + uobs) + y(urry + ugby))
Ty + Yry 20, + yby
= — Uy — U
T r
From the above calculation, we have
Try + Yry

3 =1, and 0,4+ y0, =0.

All of this simply means that in polar coordinates gz = u,.. Therefore, the insula-
tion of the inner circle reads
ur(1,0) =0, 0<0<m/4.
Now, we can write the BVP as

Upp (1, 0) + Lup(r,0) + Hug(r,0) =0, 1<r<2, 0<6<m/4

u(r,m/4) = 100r, l<r<2;
u(2,0) = 50, 0<6<m/4
ug(r,0) =0, l<r<2;
ur(1,0) =0, 0<0<m/4.

3.2. The 3-D Laplacian in cylindrical coordinates. Recall that if a point p
in R? has cartesian coordinates (x,y, ), then its cylindrical coordinates are (7,6, z)
with r and 0 as above:

xr=rcosf, y=rsinf and z=-z.

From the previous calculations, we get the following

FIGURE 9. Rectangular and cylindrical coordinates

Proposition 3.2. The expression for the three dimensional Laplacian in cylindrical
coordinates is

T or2  ror  r2002 0 922
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3.3. The 3-D Laplacian in spherical coordinates. Recall that if a point p in
R? has cartesian coordinates (z,, z), then its spherical coordinates are (p,0,¢)
(see figure) with

FIGURE 10. Rectangular and spherical coordinates

x = pcosfsin g, y = psinfsing, 2z = pcosap.

We would like to express the Laplacian A in terms of only p, 6, and ¢. This can
be achieved by using the chain rule and so we would need to compute the first
and second partial derivatives p, 0, ¢ with respect to x,y, z. This is not difficult to
do, but there is a more economical (just a bit more economical) way to reach the
same result by using the transition from cylindrical (r, 8, z) to spherical coordinates
(p,0,¢) instead of going from rectangular to spherical. The transition from these
systems of coordinates is given by

r=psing, 0=60, z=pcoso

and ,
pPP=r’+2% =0, tang=—.

z

Notice that the coordinate ¢ is the same in both systems and so 6, = 6, = 0. This
is why it is a little bit easier to use this transition.

From the previous section, we know the expression of A in cylindrical coordi-
nates. The action of A on a function w is:

1 1
Au = Uy + ;ur + Uy + Tizu00-

We need therefore to express u,, uy., and u,, in terms of the spherical variables.
By the chain rule, we have the following

Ur = Uppr + Uy (no € involved!);

Uz = Upp: + u¢¢z7

Upyr = (up)Tp'r + (U¢)r¢r + Upprr + u¢¢rr
= (upppr + up¢¢r) pr+ (u¢ppr + u(b(zﬁ(br) Or + UpPrr + u¢¢rr 50
— 2 2

Upr = Upp (pr) + 2up¢pr¢r + u¢¢(¢7‘) + Upprr + Uqﬁd)rr

Uzy = upp(pz)2 + 2up¢pz¢z + u¢¢(¢z)2 + Uppzz + uqbd)zz
From these, we get then

Upy + %ur + Uy, = Upp (pr 2 + Pz 2) + 2up¢ (pr(br + pz¢z) + Upep (¢r 2 + ¢z 2)
+’U/p (pr'r + Pzz + %pr) + Ugp ((brr + (bzz + %(br)
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Now we express the terms between parentheses in terms of spherical coordinates.
We have,

2 )
. cos sin
pr =sing, p, =cose, Prr = ¢7 Pzz = )
Cos ¢ . sin ¢ cos ¢ SIn ¢ cos ¢
(rb’f‘ = ’ d)z = —si ¢Pa (brr = *2727 d)zz =2 B}
p P p
We obtain the parentheses terms as
1
Pr2+Pz2=1’ pr¢r+pz¢z:0a ¢T2+¢22:?)
1 2 1 cot ¢
Prr + Pzz + —Pr = —, and ¢7’r + ¢zz + 7(257“ = B)
r p r P
This gives then
1 B cot ¢
Upy + ;ur F Uz = Upp + ;up + ﬁuw + 71%.

1
To obtain Au, need to add the term —wugg. This gives the following
T

Proposition 3.3. The expression of the Laplacian in spherical coordinates is

A_82+28+182+cot¢8+ 1 0?

0p2 plOp  p?O¢? p? 0¢  p2sin® ¢ 062
Example Consider the steady-state temperature in the portion of a spherical shell
contained in the first octant. Assume that that the inner radius is 1 and the outer

radius is 2 and that the boundary conditions are as indicated in the figure. The

Inner surface kept
at 0 degrees

yz—-Side kept
at 0 degrees

xz-Side
insulated f
Outer surface
insulated

xy-Side kept
at 200 degrees

FIGURE 11. Portion of a spherical shell

steady-state temperature u(p, 6, ¢) satisfies
e The Laplace equation inside the solid

e The zy-face: u = 200
e The yz-face: u=20
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e The zz-face: ug =0
e The inner spherical boundary u = 0
e The outer spherical boundary u, = 0

The BVP is therefore

Upp + 2ty + gy + Dlug + odug =0 1<p<2,0<0<7/2, 0<¢<7/2
u(p,0,7/2) = 200 1<p<2,0<0<m/2

u(p,m/2,¢) =0 1l<p<2, 0<p<m/2

ug(p,0,9) =0 1<p<2, 0<p<m/2

u(l,6,¢9) =0 0<bO<m/2, 0< <72

up(2,6,6) =0 0<f<m/2, 0<p<m/2.

4. EXERCISES

All of the following exercises deal with the steady-state distribution of the tem-
perature in either 2-dimensional plates or 3-dimensional regions. For each exercise,
write the corresponding BVP.

Exercise 1. A 10 x 20 rectangular plate. The vertical sides are kept at constant
temperatures. The left at 10 degrees and the right at 50 degrees. The horizontal
sides are insulated. (Can you guess the solution for this problem?)

Exercise 2. A 10 x 20 rectangular plate with boundary conditions as in figure. At
the lower side where there is poor insulation the normal derivative of the tempera-
ture is equal to 0.5 times the temperature.

Kept at 20 degrees

Insulation Kept at 10 degrees

Poor insulation

FIGURE 12. Rectangular plate

Exercise 3. A 1 x 2 x 3 solid rectangular box. with boundary conditions as
indicated in the figure.

Exercise 4. A plate in the shape of a quarter of a disk of radius 10 and with
boundary conditions as indicated in the figure.
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Top and back
faces insulated

Right face
Left face] u=10
u=-10
Front face”]
insulated

Bottom face
u=0

FIGURE 13. Rectangular box

u=26

e

Insulation —»

u=0

FIGURE 14. A quarter of a disk shaped plate

Exercise 5. A plate in the shape of half of a ring with inner radius 1 and outer
radius b, (with b > 1), where the boundary conditions are as indicated in the figure.

Exercise 6. A plate in the shape of a 45%-sector of a ring with radii 1 and b, with
b > 1, and where the boundary conditions are as indicated

Exercise 7. A solid cylinder of radius 10 and height 20. The top surface is
insulated, the bottom surface is kept at temperature 20 degrees and the lateral
surface is kept at temperature 100 degrees.

Exercise 8. A solid hollow cylinder (cylindrical shell) with radii 10 and 15 and
with height 20. Assume that the inner lateral surface is insulated, the outer lateral
surface is kept at temperature 100 degrees, the bottom surface is insulated and the
top surface is kept at 50 degrees.

Exercise 9. A solid sphere with radius 10. The top hemisphere is kept at temper-
ature 100 degrees and the lower hemisphere is kept at temperature 0 degrees.
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’7:1009 Ipi

|

Insulation T
u=100 u=0

F1GURE 15. A half-ring shaped plate

Insulation

A

,,,,,,,,,,,,

FIGURE 16. A 459 sector of a ring shaped plate

Exercise 10. A hollow solid sphere (spherical shell) with radii 1 and 5. The inner
and outer surfaces are kept at temperatures 100 and 50 degrees, respectively. (Can
you guess the temperature distribution?)



