
CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR

SECOND ORDER LINEAR PDE

1. Linear Partial Differential Equations

A partial differential equation (PDE) is an equation, for an unknown function
u, that involves independent variables, x, y, · · · , the function u, and the partial
derivatives of u. The order of the PDE is the order of the highest partial derivative
of u in the equation.

The following are examples of some famous PDE’s

ut − k(uxx + uyy) = 0 2d heat equation, order 2 (1)
utt − c2(uxx + uyy) = 0 2d wave equation, order 2 (2)
uxx + uyy + uzz = 0 3d Laplace equation, order 2 (3)
uxx + uyy + uzz + λu = 0 Helmholtz equation, order 2 (4)
uxx + xuyy = 0 Tricomi equation, order 2 (5)
iut + uxx + uyy + uzz = 0 Schrödinger′s equation, order 2 (6)
utt + uxxxx = 0 Beam quation, order 4 (7)
u2
x + u2

y = 1 Eikonal equation, order 1 (8)
ut − uxx + uux = 0 Burger′s equation, order 2 (9)
ut − 6uuxx + uxxx = 0 KdV equation, order 3 (10)

and the following are other examples (of non famous PDEs that I just made up)

ux + sin(uy) = 0 order 1 (11)

3x2 sin(xy)e−y2

uxx + ln(x2 + y2)uy = 0 order 2 (12)

A PDE is said to be linear if it is linear in u and its partial derivatives (it is a
first degree polynomial in u and its derivatives). In the above lists, equations (1)
to (7) and (12) are linear PDES while equations (8) to (11) are nonlinear PDEs.

The general form of a first order linear PDE in two variables x, y is:

A(x, y)ux +B(x, y)uy + C(x, y)u = f(x, y)

and that of a first order linear PDE in three variables x, y, z is:

A(x, y, z)ux +B(x, y, z)uy + C(x, y, z)uz +D(x, y, z)u = f(x, y, z)

The general form of a second order linear PDE in two variables is:

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = f, (13)

where the coefficients A, B, C, D, E, F and the right hand side f are functions
of x and y. If the coefficients A,B,C, D, E, and F are constants, the equation is
said to be a linear PDE with constant coefficients.
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2. Linear Partial Differential Operator

The linear PDE (13) can be written in a more compact form as

Lu = f, (14)

where L is the differential operator defined by

L = A(x, y)
∂2

∂x2
+ 2B(x, y)

∂2

∂x∂y
+ C(x, y)

∂2

∂y2
+

+D(x, y)
∂

∂x
+ E(x, y)

∂

∂y
+ F (x, y). (15)

Remark. L operates on functions as a mapping u −→ Lu from the space of
functions into itself. It transforms a function u into another function given by
Auxx + 2Buxy + · · · , whence the terminology.

The operator L is linear (as a transformation from the space of function into
itself). More precisely, we have the following

Lemma. For any two functions u and v (with second order partial derivatives)
and for any constant c, we have

L(u+ v) = L(u) + L(v) and L(cu) = cLu.

Proof. By using the linearity of the differentiation ((u+v)x = ux+vx, (u+v)xx =
uxx + uyy, etc.) and after grouping together the terms containing u, and grouping
together the terms containing v, we get

L(u+ v) = A(u+ v)xx + 2B(u+ v)xy + C(u+ v)yy+
+D(u+ v)x + E(u+ v)y + F (u+ v)

= (Auxx + 2Buxy + Cuyy +Dux + Euy + Fu)+
+(Avxx + 2Bvxy + Cvyy +Dvx + Evy + Fv)

= Lu+ Lv

This verifies the first property. The same argument applies for the second property.

Remark. The linearity of L can be simply expressed as

L(au+ bv) = aLu+ bLv

for every pair of functions u, v and constants a, b.

The operators associated with the Laplace, wave, and heat equations are:
Laplace Operator

∆ =
∂2

∂x2
+

∂2

∂y2
in R2

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
in R3
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Wave Operator (usually denoted �, and normalized with c = 1)

� =
∂2

∂t2
− ∂2

∂x2
in 1 space variable

� =
∂2

∂t2
−
(

∂2

∂x2
+

∂2

∂y2

)
=

∂2

∂t2
−∆ in 2 space variables

� =
∂2

∂t2
−
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=

∂2

∂t2
−∆ in 3 space variables

Heat Operator (usually denoted H and normalized with k = 1)

H =
∂

∂t
− ∂2

∂x2
in 1 space variable

H =
∂

∂t
−
(

∂2

∂x2
+

∂2

∂y2

)
=

∂

∂t
−∆ in 2 space variables

H =
∂

∂t
−
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=

∂

∂t
−∆ in 3 space variables

Remark. A linear PDE of order m in Rn is a PDE of the form

Lu(x) = f(x), x = (x1, · · · , xn) ∈ Rn,

where L is the m-th order linear differential operator given by

L =
∑

k1+···+kn≤m

ak1,··· ,kn(x)
∂k1+···+kn

∂xk1
1 · · · ∂xkn

n

,

where the coefficients ak1,··· ,kn are functions of x.

3. Classification

Consider in R2 a second order linear differential operator L as in (15). To the
operator L, we associate the discriminant D(x, y) given by

D(x, y) = A(x, y)C(x, y)−B(x, y)2.

The operator L (or equivalently, the PDE Lu = f) is said to be:

• elliptic at the point (x0, y0), if D(x0, y0) > 0;
• hyperbolic at the point (x0, y0), if D(x0, y0) < 0;
• parabolic at the point (x0, y0), if D(x0, y0) = 0.

If L is elliptic (resp. hyperbolic, parabolic) at each point (x, y) in a domain Ω ⊂ R2,
then L is said to be elliptic (resp. hyperbolic, parabolic) in Ω.

The 2-dimensional Laplace operator ∆ is elliptic in R2 (we have D ≡ 1). The
1-dimensional wave operator � is hyperbolic in R2 (we have D ≡ −1). The 2-
dimensional heat operator H is parabolic in R2 (we have D ≡ 0). These three
operators ∆, �, andH are prototype operators. They are prototype in the following
sense. If an operator L is elliptic in a region Ω, then the solutions of the equation
Lu = 0 behave as those of the equation ∆u = 0; if L is hyperbolic in a region Ω,
then the solutions of the equation Lu = 0 behave as those of the equation �u = 0;
and if L is parabolic in a region Ω, then the solutions of the equation Lu = 0 behave
as those of the equation Hu = 0.
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When the coefficients of an operator L are not constant, the type of L might
vary from point to point. An example is given by the Tricomi operator

T =
∂2

∂x2
+ x

∂2

∂y2
.

The type of T is illustrated in the figure. The discriminant of T is D = x. Hence, T

T elliptic  in the 
1/2 plane x>0

T hyperbolic in the
1/2 plane x<0    

T parabolic on the y−axis 

Figure 1. Type of the Tricomi operator

is elliptic in the half-plane x > 0, hyperbolic in the half-plane x < 0, and parabolic
on the y-axis.

Remark about the terminology Consider again the operator L given in (15).
We define its symbol at the point (x0, y0) as the polynomial P (ξ, η) obtained from
(15) by replacing ∂/∂x by the variable ξ and the by replacing ∂/∂y by the variable
η. The result, after evaluating the coefficients A, · · · , F at the point (x0, y0), is the
polynomial with 2 variables

P (ξ, η) = Aξ2 + 2Bξη + Cη2 +Dξ + Eη + F.

Now if we consider the curves in the (ξ, η)-plane, given by the equation

P (ξ, η) = constant,

then these curves are ellipses if D(x0, y0) > 0; hyperbolas if D(x0, y0) < 0; and
parabolas if D(x0, y0) = 0. This justifies the terminology for the type of an operator.

Second order operators in R3: The classification for second order linear op-
erators in R3 (or in higher dimensional spaces) is done in an analogous way by
associating to the operator its symbol which is a polynomial of degree two in three
variables and considering the surfaces defined by the level sets of the polynomial.
These surfaces are either ellipsoids; hyperboloids; or paraboloids. The operator is
accordingly labeled as elliptic, hyperbolic, or parabolic.

This is equivalent to the following. Consider a second order operator L in R3

L = a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ 2c

∂2

∂x∂z
+ d

∂2

∂y2
+ 2e

∂2

∂y∂z
+ f

∂2

∂z2
+ lower order terms

where the coefficients a, b, . . . are functions of (x, y, z). To L, we associate the
symmetric matrix

M(x, y, z) =

 a b c
b d e
c e f


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Because M is symmetric, it has three real eigenvalues. Then, L is elliptic at a
point (x0, y0, z0) if all three eigenvalues of M(x0, y0, z0) are of the same sign; L is
hyperbolic if two eigenvalues are of the same sign and the third of a different sign;
and L is parabolic if one of the eigenvalues is 0.

4. Principle Of Superposition

Let L be a linear differential operator. The PDE Lu = 0 is said to be a homo-
geneous and the PDE Lu = f (with f ̸= 0) is said to be nonhomogeneous.

Claim. If u1 and u2 are solutions of the homogeneous equation Lu = 0, then for
any constants c1 and c2, the linear combination w = c1u1 + c2u2 is also a solution
of the homogeneous equation.

Proof. This is a direct consequence of the linearity of L. We have

Lw = L(c1u1 + c2u2) = c1Lu1 + c2Lu2 = c10 + c20 = 0.

In general, we have the following

Principle of superposition 1. If u1, · · · , uN are solutions of the homogeneous
equation Lu = 0, then their linear combination

w = c1u1 + · · ·+ cNuN =
N∑
j=1

cjuj , (c1, . . . , cN , constants)

is also a solution of the homogeneous equation.

In general, the space of solutions of homogeneous PDEs contains infinitely many
independent solutions and one might need to use not only a finite linear combination
of solutions but an infinite linear combination of solutions. Thus one obtains an
infinite series of functions. One is then tempted to conclude that the series of
function obtained is again a solution of the homogeneous equation. This is indeed
the case, if certain conditions are met. The series needs to converge to a twice
differentiable function, and the termwise differentiation is allowed in the infinite
series. For now, we state this as

Principle of superposition 1’. Suppose that

• u1, u2, · · · are infinitely many solutions of the homogeneous equation Lu =
0;

• the series w =
∑∞

j=1 cjuj , (with c1, c2, . . . constants) converges to a twice
differentiable function;

• term by term partial differentiation is valid for the series, i.e., Dw =∑
cjDuj , where D is any partial differentiation of order 1 or 2.

Then the function w given by the above series is again a solution of the homogeneous
equation.

For the nonhomogeneous equation we have the following claim whose verification
follows from the linearity of the operator.

Claim. If u1 satisfies Lu1 = f1 and u2 satisfies Lu2 = f2, then their linear
combinations w = c1u1 + c2u2 satisfies

Lw = c1f1 + c2f2.



6CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

This leads to the following

Principle of superposition 2. If u1, · · · , uN are solutions of the nonhomogeneous
equation Luj = fj , then their linear combination

w = c1u1 + · · ·+ cNuN =
N∑
j=1

cjuj , (c1, . . . , cN , constants)

is a solution of the equation

Lw = c1f1 + · · ·+ cNfN =
N∑
j=1

cjfj .

Of course, we can write a version 2’ for this principle when we have infinitely
many equations.

5. Decomposition Of BVP Into Simplers BVPs

In most physical and many mathematical problems, in addition to the PDE,
there are conditions on the boundary that the solution must also satisfy these are
the boundary conditions. The principle of superposition can be used to simplify the
given BVP into simplers sub boundary value problems.

For example, consider a domain Ω ⊂ R2 whose boundary ∂Ω is the union of two
curves Γ1 and Γ2 as in the figure.

Ω

Γ
1

Γ
2

Figure 2. Domain with boundary in R2

Suppose that we have the BVP Lu = F inside the domain Ω
u = f1 on the curve Γ1

u = f2 on the curve Γ2

By using the principle of superposition, this problem can be decomposed as follows:
This means we can find a solution u of the BVP as u = v + w, where v and w are
the solution of the problems Lv = F in Ω

v = 0 on Γ1

v = 0 on Γ2

and

 Lw = 0 in Ω
w = f1 on Γ1

w = f2 on Γ2

Let us verify that if v and w are solutions of the sub problems, then u = v + w
solves the original problem.

• The PDE: Lu = Lv + Lw = F + 0 = F ;
• the boundary condition on Γ1: u = v + w = 0 + f1 = f1;
• the boundary condition on Γ2: u = v + w = 0 + f2 = f2.
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Original BVP

Lu=F

u=f
1

u=f
2

Sub problem 1

w=f
1

w=f
2

 = + 

Lv=F 

v=0 

v=0 
Lw=0 

Sub problem 2 

Figure 3. Decomposition of a BVP into 2 sub problems

Note that in the first sub problem the PDE in nonhomogeneous while the bound-
ary conditions are homogeneous and in the second sub problem the PDE is homo-
geneous and the boundary conditions are nonhomogeneous.

The sub problem for w can be decomposed further into two sub problems as
follows

BVP for w

Lw=0

w=f
1

w=f
2

BVP for w
1

w
2
=0

w
2
=f

2

 = + 

Lw
1
=0

w
1
=f

1
 

w
1
=0

Lw
2
=0 

BVP for w
2

Figure 4. Decomposition of the BVP for w

 Lw1 = 0 in Ω
w1 = f1 on Γ1

w1 = 0 on Γ1

and

 Lw2 = 0 in Ω
w2 = 0 on Γ1

w2 = f2 on Γ1
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To find the solution u of the original problem, we can find v, w1, and w2 (solutions
of simpler problems) and set

u = v + w1 + w2.

6. Examples

6.1. Example 1. (Heat equation in a rod) Consider modeling heat conduction in
a rod of length L. Assume that the initial temperature of the rod is given by a
function f(x), the left end is insulated and the right end is kept at a constant
temperature of 1000. The BVP is therefore

ut(x, t)− kuxx(x, t) = 0 0 < x < L, t > 0;
ux(0, t) = 0 t > 0;
u(L, t) = 100 t > 0;
u(x, 0) = f(x) 0 < x < L

This BVP can be decomposed as BVP1

= + 

t−axixs

x−axis 

0 L 

u=f

u
t
=ku

xx

u
x
=0 u=100 

v
t
=kv

xx
 

v=f 

v
x
=0 v=0 

w
t
=kw

xx
 

w
x
=0 w=100 

w=0 

Figure 5. Decomposition of the BVP in example 1


vt(x, t)− kvxx(x, t) = 0 0 < x < L, t > 0;
vx(0, t) = 0 t > 0;
v(L, t) = 0 t > 0;
v(x, 0) = f(x) 0 < x < L

and BVP2 
wt(x, t)− kwxx(x, t) = 0 0 < x < L, t > 0;
wx(0, t) = 0 t > 0;
w(L, t) = 100 t > 0;
w(x, 0) = 0 0 < x < L

6.2. Example 2. (1-D Wave equation) Consider the small vibrations of a string of
length L with fixed ends and with initial position and initial velocity given by the
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functions f(x) and g(x). The BVP is
�u(x, t) = 0 0 < x < L, t > 0;
u(0, t) = 0, t > 0;
u(L, t) = 0, t > 0;
u(x, 0) = f(x) 0 < x < L;
ut(x, 0) = g(x) 0 < x < L.

We can decompose this BVP (which contains two nonhomogeneous boundary con-
ditions) into two subproblems, each of which contains only one single nonhomoge-
neous condition:

BVP1 BVP2
�v(x, t) = 0;
v(0, t) = 0;
v(L, t) = 0;
v(x, 0) = f(x);
vt(x, 0) = 0.


�w(x, t) = 0;
w(0, t) = 0;
w(L, t) = 0;
w(x, 0) = 0;
wt(x, 0) = g(x).

Thus to find the solution u of the original problem, we can find separately v and w
solutions of the simpler problems BVP1 and BVP2 and get u = v + w.

6.3. Example 3. (Dirichlet problem) Consider the following problem that models
the steady-state temperature in a plate shaped like a quarter of a disk. Assume
that the horizontal side is kept at 00, the vertical at 500, and the circular side at
1000. The following figure shows how we can decompose the problem.

BVP for u

∆ u=0

BVP for v

∆ v=0

BVP for w

∆ w=0= + 

u=0 

u=50 

u=100 

v=0 

v=50 

v=0 

w=0 

w=100 
w=0 

Figure 6. Decomposition of the BVP in example 3

7. Uniqueness of solutions of BVPs

We will be constructing solutions to BVPs and an important question that needs
addressing is whether the constructed solution is the only solution or whether there
other solutions. For the BVPs dealing with the heat, wave, and Laplace equations,
the solution is indeed unique. We indicate why this is the case.

The uniqueness of the problems dealing with the Laplace operator ∆ is based on
a fundamental property satisfied by harmonic functions: the maximum principle.
We state it as a Theorem

Theorem. (The Maximum Principle) Suppose that u is a harmonic function (i.e.
∆u = 0) in a domain Ω ⊂ R2 (or in R3 or higher dimensional space). Suppose that
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Ω has a piecewise smooth boundary ∂Ω and that u is continuous on Ω = Ω ∪ ∂Ω.
Then the maximum (and minimum) values of u on Ω occur on the boundary ∂Ω.
That is,

max
p∈Ω

u(p) = u(p0) for some p0 ∈ ∂Ω .

We also have

min
p∈Ω

u(p) = u(q0) for some q0 ∈ ∂Ω .

Now we illustrate how we can apply this property to show uniqueness of a BVP
(Poisson problem)

Theorem. Suppose that u is continuous on Ω and is a solution of the BVP{
∆u(p) = F (p) p ∈ Ω
u(p) = g(p) p ∈ ∂Ω

Then u is the unique solution of the BVP

Proof. Suppose that the BVP has two solutions u1 and u2, we need to show that
u1 ≡ u2. Let v = u1 − u2. Then, by using the principle of superposition, we can
prove that v satisfies the BVP{

∆v(p) = 0 p ∈ Ω
v(p) = 0 p ∈ ∂Ω

Thus v is a harmonic function in Ω that is identically zero on the boundary ∂Ω.
By the maximum principle, we have then maxΩ v = minΩ v = 0. We deduce that
v ≡ 0 and therefore u1 ≡ u2 (the two solutions are identical).

For problems dealing with the heat operator H there is also a version of the
maximum principle that guarantees the uniqueness of the corresponding BVPs.

For the wave operator �, the uniqueness is proved by using energy conservation.
We illustrate this idea for the vibrating string. Consider the BVP

(1)


utt(x, t) = c2uxx(x, t) 0 < x < L, t > 0
u(0, t) = 0 t > 0
u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 < x < L
ut(x, 0) = g(x) 0 < x < L

To a solution u of BVP (1), we associate its energy integral at time t as the function
E(t) defined by

E(t) =
1

2

∫ L

0

(
1

c2
u2
t (x, t) + u2

x(x, t))dx

(E is the sum of the kinetic and potential energies). Although it appears that E
depends on time t, it is in fact independent on t.

Lemma. The function E is constant
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Proof. To prove that E(t) is independent on t, we need to verify that
dE

dt
≡ 0.

We have

dE

dt
=

∫ L

0

(
uttut

c2
+ uxtux)dx since (u2

x)t = 2uxtux,

and (u2
t )t = 2uttut

=

∫ L

0

(uxxut + uxtux)dx (replace utt by c2uxx)

= [utux]
x=L
x=0 −

∫ L

0

uxutxdx+

∫ L

0

uxtuxdx (integ. by parts for uxxut)

= ut(L, t)ux(L, t)− ut(0, t)ux(0, t)

Now it follows from u(0, t) = u(L, t) = 0 that

ut(0, t) = ut(L, t) = 0

This shows that
dE

dt
≡ 0.

Now we are in position to prove the uniqueness for the solution of BVP (1).

Lemma. If u(x, t) is a solution of the BVP (1), continuous on the region 0 ≤
x ≤ L, t ≥ 0, then u is the unique solution of the BVP.

Proof. Suppose that u1 and u2 are two solutions of (1). Let v = u1 − u2. By
using the superposition principle, it is easy to see that the function v satisfies the
following BVP

vtt = c2vxx, v(0, t) = v(L, t) = 0, v(x, 0) = 0, vt(x, 0) = 0.

We know from the previous Lemma that the energy of v is constant. Thus, E(t) =
E(0) for all t ≥ 0. The energy of v at t = 0 is

E(0) =
1

2

∫ L

0

(
1

c2
v2t (x, 0) + v2x(x, 0))dx = 0

since v(x, 0) = vt(x, 0) = 0. Therefore,

E(t) =
1

2

∫ L

0

(
1

c2
v2t (x, t) + v2x(x, t))dx = 0.

Note that the integrand in the last integral is the sum of two squares, the only way
to have the integral identically 0 is if we have

vx(x, t) = vt(x, t) = 0 ∀x, t.
This in turn implies that v(x, t) ≡ Constant. Finally, this constant is 0 since
v(x, 0) = 0.

8. Exercises

In Exercises 1 to 5, classify the PDE as either linear or nonlinear and give its
order.
Exercise 1. uxx + uyy = eu

Exercise 2. 3x2ux − 2(ln y)uy +
3

2x− 1
u = 5

Exercise 3. uxy = 1
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Exercise 4. (ux)
2 − 5uy = 0

Exercise 5. utt − 2uxxxx = cos t

In Exercises 6 to 10, classify each second order linear PDE with constant coeffi-
cients as either elliptic, parabolic, or hyperbolic in the plane R2.
Exercise 6. uxy = 0

Exercise 7. uxx − 2uxy + 2uyy + 5ux − 12uy +
√
2u = 0

Exercise 8. uxx + 4uxy + uyy − 21uy = cosx

Exercise 9. 2uxx + 2
√
2uxy + uyy = exy

Exercise 10. −uxx + uxy − uyy + 3u = x2

In Exercises 11 to 13, find the regions in the (x, y)-plane where the second order
PDE (with variable coefficients) is elliptic; parabolic; and hyperbolic.
Exercise 11. x2uxx + uyy = 0

Exercise 12.
√
x2 + y2uxx + 2uxy +

√
x2 + y2uyy + xux + yuy = 0

Exercise 13. uxx + 2yuxy + xuyy − cos(xy)uy = 1

Exercise 14. Verify that the functions (x+1)e−t, e−2x sin t and xt are, respec-
tively solutions of the nonhomogeneous equations

Hu = −e−t(x+ 1), Hu = e−2x(4 sin t+ cos t), and Hu = x

where H is the 1-D heat operator H =
∂

∂t
− ∂2

∂x2

Find a solution of the PDE

Hu =
√
2x+ πe−2x(4 sin t+ cos t) + e−t(x+ 1)

Exercise 15. Verify that the functions x cos(x − t) and sin(x + t) + cos(
√
2t)

are, respectively solutions of the nonhomogeneous equations

�u = 2 sin(x− t), and �u = −2 cos(
√
2t)

where � is the 1-D wave operator � =
∂2

∂t2
− ∂2

∂x2

Find a solution of the PDE

�u = − sin(x− t) + π cos(
√
2t)

Exercise 16. Verify that the functions r2, r2 cos(2θ) and sin(3θ) are, respectively
solutions of the PDEs

∆u = 2, ∆u = 0, and ∆u = − 9

r2
sin(3θ)

where ∆ is the 2-D Laplace operator in polar coordinates ∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
Find a solution of the PDE

∆u = −1 + sin(3θ)

In Exercises 17 to 20, decompose the given BVP into simpler BVPs in such a
way that only one nonhomogeneous condition appears in each sub BVP.
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Exercise 17.

ut − kuxx = cos t 0 < x < L, t > 0
u(x, 0) = 3x 0 < x < L
u(0, t) = 0, u(L, t) = 20 t > 0

Exercise 18.

utt = 2uxx + 2 sinx cos t 0 < x < π, t > 0
u(x, 0) = sin(3x), ut(x, 0) = 1 0 < x < π
u(0, t) = sin t, u(π, t) = cos t t > 0

Exercise 19.

uxx + uyy = 5 cosx sin y 0 < x < π, 0 < y < π
u(x, 0) = 1, uy(x, π) = u(x, π) 0 < x < π
u(0, y) = −1, ux(π, y) = −3u(π, y) 0 < y < π

Exercise 20.

urr +
1

r
ur +

1

r2
uθθ = 0 0 < r < 1, 0 < θ < π

u(r, 0) = 10, u(r, π) = 20, 0 < r < 1
ur(1, θ) = 5u(1, θ) 0 < θ < π

Exercise 21. Write the BVP for the steady-state temperature in a plate in the
form of 300-sector of a ring with radii 1 and 2. One of the radial edges is kept
at temperature 100C and on the other radial edge, the gradient of the tempera-
ture is numerically equal to the temperature. The outer circular edge is kept at
temperature 1000C, while the inner circular edge is insulated.

Decompose the BVP into Sub-BVPs that contain only one nonhomogeneous
condition.


