
FOURIER SERIES PART I:

DEFINITIONS AND EXAMPLES

To a 2π-periodic function f(x) we will associate a trigonometric series

a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx) ,

or in terms of the exponential eix, a series of the form∑
n∈Z

cne
inx .

For most of the functions that we will be dealing with, these series are in a sense
equal to f . Before we do so, we need some terminology and introduce a class of
functions.

1. Piecewise continuous and piecewise smooth functions

We will be using the following notation:

x → c+ means x → c and x > c ,
x → c− means x → c and x < c .

For a function f(x) we will use the following

f(c+) = lim
x→c+

f(x) and f(c−) = lim
x→c−

f(x)

provided that the above limits exist and are finite.
A function f is said to be piecewise continuous on the closed interval [a, b] if

there exit finitely many points

c0 = a < c1 < c2 < · · · < cn−1 < cn = b

such that:

• f is continuous in each open interval (cj−1, cj), for j = 1, · · · , n;
• f(a+), f(b−) exist and
• for j = 1, · · · , n, the limits f(c−j ) and f(c+j ) exist.

Hence, f is continuous everywhere except possibly at a finite number of points
where it has jump discontinuities. The space of piecewise continuous functions on
[a, b] will be denoted by C0

p [a, b].

Example 1. Consider the function

f(x) =


x

2
+ 1 if − 1 < x < 0 ;

x2 − 1 if 0 < x < 1 ;
0 if 1 < x ≤ 2

Then f ∈ C0
p [−1, 2]. Inside the interval, the only discontinuities of f are at 0 and
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Figure 1. Piecewise continuous

1. We have

f(−1+) = .5, f(0−) = 1, f(0+) = −1, f(1−) = f(1+) = 0, f(2−) = 0.

Example 2. Consider the function

−1 
1 2 
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y 

Figure 2. Not piecewise continuous

f(x) =

{ 1

x− 1
if 0 ≤ x < 1 ;

2 if 1 ≤ x ≤ 2 .

The inside discontinuity of f is at x = 1. Because limx→1− f(x) = −∞ (not finite),
then f /∈ C0

p([0, 2].

A function f is said to be piecewise smooth on a closed interval [a, b] if f is
piecewise continuous on [a, b] and f ′ is also piecewise continuous on [a, b]. This
means that f ′(x) exists and is continuous everywhere in (a, b) except possibly at a
finite number of points. Moreover, at each point where f ′ is discontinuous the one
sided limits of f ′ exist and are finite. The space of piecewise continuous on [a, b]
will be denoted by C1

p [a, b].

Example 3. The function f(x) = |x| is piecewise smooth on [−1, 5]. It is contin-
uous on [−1, 5] and its derivative exists everywhere except at x = 0. At 0, we have
f ′(0+) = 1 and f ′(0−) = −1.

Example 4. The function

f(x) =

{
0 if − 1 ≤ x < 0 ;
(x− 1)2/3 if 0 < x < 2 .

is piecewise continuous but it is not piecewise smooth. The function is piecewise
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Figure 3. Piecewise continuous but not piecewise smooth

continuous because f(−1+) = 0, f(2−) = 1, and at x = 0, it has a jump disconti-
nuity (f(0−) = 0 and f(0+) = 1). The derivative f ′ is

f ′(x) = 0 for − 1 < x < 0 and f ′(x) =
2

3(x− 1)1/3
for 0 < x < 2, x ̸= 1

The derivative f ′ is not piecewise continuous because f ′(1±) are not finite (the
function f has a cusp at x = 1).

A function f is said to be piecewise continuous (respectively piecewise smooth)
on the whole real line R if f is piecewise continuous (resp. piecewise smooth) on
each closed interval [a, b] ⊂ R.

Remark. Note that if f ∈ C0
p [a, b], then f is integrable on [a, b]. That is,∫ b

a

f(x)dx is a finite number. Indeed, with c1 < c2 < · · · < cn−1 the jump discon-

tinuities of f , we have∫ b

a

f(x)dx =

∫ c1

c0

f(x)dx+

∫ c2

c1

f(x)dx+ · · ·+
∫ cn

cn−1

f(x)dx

and each integral on the right is finite because within the limits of integration, the
function is bounded and continuous.

2. Even and odd functions

A function f is said to be an even (respectively odd) function if

f(−x) = f(x) (resp. f(−x) = −f(x)) ∀x in domain of f.

Note that it follows from the definition that the domain of an even or an odd

Figure 4. Graphs of even and odd functions

function needs to de symmetric with respect to 0 ∈ R. That is, if x is in the domain,
then (−x) is also in the domain. The graph of an even function is symmetric with
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respect to the y-axis and the graph of an odd function is symmetric with respect to
the origin. When integrating even or odd functions, it is useful to use the following
property

Lemma. If f ∈ C0
p [−A, A] is an even function, then∫ A

−A

f(x)dx = 2

∫ A

0

f(x)dx .

If f ∈ C0
p [−A, A] is an odd function, then∫ A

−A

f(x)dx = 0 .

Proof. For an even function f , we have∫ A

−A

f(x)dx =

∫ 0

−A

f(x)dx+

∫ A

0

f(x)dx

=

∫ 0

A

f(−u)d(−u) +

∫ A

0

f(x)dx (substitution u = −x)

=

∫ A

0

f(u)du+

∫ A

0

f(x)dx (use f even)

= 2

∫ A

0

f(x)dx

An analogous argument can be applied when f is odd.

Remark. I leave it as an exercise for you to prove that the product of two even
functions is even; two odd functions is even; and the product of an even and odd
function is odd. Thatis

Even× Even = Even
Odd×Odd = Even
Even×Odd = Odd

3. Periodic functions

Recall that a function f is said to be periodic with period T (T > 0) if

f(x+ T ) = f(x− T ) = f(x) ∀x in domain of f .

This implies in particular that if x is in the domain of f , then x+ kT is also in the
domain of f for every integer k and f(x+ kT ) = f(x).

x 

y 

1 2 −1 

Figure 5. Graph of a periodic function, T = 2
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Example 1. For example, the functions sinx and cosx are 2π-periodic and tanx
is π-periodic. In general, if ω is constant, then sin(ωx) and cos(ωx) have period
T = 2π/ω.

Example 2. Denote by [ ] the greatest integer function. Thus, for x ∈ R, [x] the
greatest integer less or equal than x. For instance, [1.7] = 1, [

√
5] = 2, [π] = 3,

x 

y 

Figure 6. The step function [x]

[−0.001] = −1, [−
√
7] = −3, etc. Note that [ ] satisfies the property [x+1] = [x]+1

for ever x ∈ R.

x 

y

Figure 7. The sawtooth function: x− [x]

The function f defined by f(x) = x − [x] (the fractional part of x), also called
the sawtooth function, is piecewise smooth in R and periodic with period T = 1

f(x+ 1) = (x+ 1)− [x+ 1] = x+ 1− ([x] + 1) = x− [x] = f(x), ∀x ∈ R .

Example 3. (Triangular wave function) I leave it as an exercise for you to check
that the function f defined by

f(x) =

∣∣∣∣x− 2

[
x+ 1

2

]∣∣∣∣
is continuous and periodic with period T = 2.

An important property of periodic functions is the following.

Theorem Let f be piecewise continuous in R and periodic with period T . Then∫ T

0

f(x)dx =

∫ a+T

a

f(x)dx , ∀a ∈ R
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0 1 2 x 

y 

1 

Figure 8. The triangular wave function

Proof. Consider the function H(a) defined for a ∈ R by H(a) =

∫ a+T

a

f(x)dx. To

prove the Theorem, we need to show that H is constant. We rewrite H as

H(a) =

∫ 0

a

f(x)dx+

∫ a+T

0

f(x)dx =

∫ a+T

0

f(x)dx−
∫ a

0

f(x)dx .

We can compute the derivative H ′(a) by using the Fundamental Theorem of Cal-
culus and find

H ′(a) = f(a+ T )− f(a) = 0

because f is T -periodic. H ′ ≡ 0 gives H constant.

4. Orthogonality of functions

We define an inner product < , > in the space C0
p [a, b] of piecewise continuous

functions on [a, b] by

< f, g >=

∫ b

a

f(x)g(x)dx , for f, g ∈ C0
p [a, b]

The norm of a function f ∈ C0
p [a, b] is defined

||f || =
√
< f, f > =

(∫ b

a

f(x)2dx

)1/2

.

Example 1. Let f(x) = |x|, g(x) =
{

1 if − 1 < x < 0
2 if 0 < x < 1

, and h(x) =
x

|x|
. Note

that h(x) = 1 for x > 0 and h(x) = −1 for x < 0. In C0
p [−1, 1], we have

< f, g >=

∫ 1

−1

f(x)g(x)dx =

∫ 0

−1

(−x)dx+

∫ 1

0

2xdx =
1

2
+ 1 =

3

2

< f, h >=

∫ 1

−1

|x| x
|x|

dx =

∫ 1

−1

xdx = 0

< g, h >=

∫ 0

−1

(−1)dx+

∫ 1

0

2dx = 1

||f || =
(∫ 1

−1

|x|2dx
)1/2

=

√
2

3

||g|| =
(∫ 0

−1

dx+

∫ 1

0

4dx

)1/2

=
√
5

||h|| =
(∫ 1

−1

dx

)1/2

=
√
2
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Two functions f, g ∈ C0
p [a, b] are said to be orthogonal if < f, g >= 0. That is,

f and g are orthogonal if ∫ b

a

f(x)g(x)dx = 0 .

A set of functions S ⊂ C0
p [a, b] is orthonormal if the elements of S are mutually

orthogonal and each element of S has norm 1. That is,

• < f, g >= 0 for every f, g ∈ S, f ̸= g
• ||f || = 1 for every f ∈ S.

Example 2. The functions f(x) = x − 1 and g(x) = (x − 1)2 are orthogonal in
C0

p [0, 2] since,

< f, g >=

∫ 2

0

(x− 1)(x− 1)2dx =
1

4
(x− 1)4

∣∣x=2

x=0
= 0.

The set S = {f, g} is orthogonal but it is not orthonormal because

||f || =
(∫ 2

0

(x− 1)2dx

)1/2

=

√
2

3

||g|| =
(∫ 2

0

(x− 1)4dx

)1/2

=

√
2

5

However, if we replace f and g by

f1(x) =
f(x)

||f ||
=

√
3

2
f(x) and g1(x) =

g(x)

||g||
=

√
5

2
g(x)

We obtain the set S1 = {f1, g1} which is orthonormal in C0
p [0, 2].

5. The trigonometric system

The following trigonometric identities will be used soon

2 cosA cosB = cos(A+B) + cos(A−B)
2 cosA sinB = sin(A+B)− sin(A−B)
2 sinA sinB = cos(A−B)− cos(A+B)
2 cos2 A = cos(2A) + 1
2 sin2 A = 1− cos(2A)

The trigonometric system over the interval [0, 2π] (or over any interval of length
2π) consists of the functions

1, cosx, sinx, cos(2x), sin(2x), · · · , cos(kx), sin(kx), · · · , k ∈ Z+

Lemma. The trigonometric system is orthogonal over [0, 2π].

Proof. We need to verify that the following inner products are zero.

< 1, sin(kx) >=< 1, cos(kx) >= 0 ∀k ∈ Z+

< cos(kx), sin(lx) >= 0 ∀k, l ∈ Z+

< cos(kx), cos(lx) >=< sin(kx), sin(lx) >= 0 ∀k, l ∈ Z+, k ̸= l

We have for k ∈ Z+

< 1, sin(kx) >=

∫ 2π

0

sin(kx)dx =

(
−cos(kx)

k

)2π

0

= −cos(2kπ)− cos 0

k
= 0
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for k, l ∈ Z+ and k ̸= l, we use one of the above trig identities to get

< cos(kx), sin(lx) > =

∫ 2π

0

cos(kx) sin(lx)dx

=
1

2

∫ 2π

0

(sin(k + l)x− sin(k − l)x)dx

=
−1

2

(
cos(k + l)x

k + l
− cos(k − l)x

k − l

)2π

0
= 0

When k = l, we have

< cos(kx), sin(kx) >=
1

2

∫ 2π

0

sin(2kx)dx =
− cos(4kπ) + cos 0

4k
= 0.

For k, l ∈ Z+ and k ̸= l, we have

< sin(kx), sin(lx) > =

∫ 2π

0

sin(kx) sin(lx)dx

=
1

2

∫ 2π

0

(cos(k + l)x− cos(k − l)x)dx

=
1

2

(
sin(k + l)x

k + l
− sin(k − l)x

k − l

)2π

0
= 0

The verification of the remaining identities is left as an exercise.

Lemma. The norm of the trig functions on [0, 2π] are:

||1|| =
√
2π, || cos(kx)|| = || sin(kx)|| =

√
π.

Proof. We have

||1||2 =

∫ 2π

0

dx = 2π

|| cos(kx)||2 =

∫ 2π

0

cos2(kx)dx =

∫ 2π

0

1 + cos(2kx)

2

=

(
x

2
+

sin(2kx)

4k

)2π

0

= π

|| sin(kx)||2 =

∫ 2π

0

sin2(kx)dx =

∫ 2π

0

1− cos(2kx)

2

=

(
x

2
− sin(2kx)

4k

)2π

0

= π

As a consequence of the two lemmas we have

Corollary. The following system is orthonormal over [0, 2π]:

1√
2π

,
sinx√

π
,
cosx√

π
, · · · , sin kx√

π
,
cos kx√

π
, · · ·

As we will see later the trigonometric system forms a basis for the space of
piecewise continuous and 2π-periodic functions.
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6. Fourier series of 2π-periodic functions

Let f ∈ C1
p(R) and 2π-periodic, we would like to associate to the function f a

series

a0
2

+
∞∑

n=1

an cos(nx) + bn sin(nx)

in such a way that at each point x0 where f is continuous the values of f and the
series are the same:

f(x0) =
a0
2

+
∞∑

n=1

an cos(nx0) + bn sin(nx0) .

An immediate question is the following. If a given function f has such a represen-
tation, how can we find the coefficients a0, a1, b1, · · · in terms of f?

The answer is not really difficult if we assume that we can interchange the sum-
mation and the integration. Then by using the orthogonality of the trigonometric
system, we would get

< f, 1 >=

∫ 2π

0

a0
2
dx+

∞∑
n=1

an

∫ 2π

0

cos(nx)dx+ an

∫ 2π

0

sin(nx)dx = πa0

Therefore,

a0 =
< f, 1 >

π
=

1

π

∫ 2π

0

f(x)dx .

To find a1 and b1:

< f, cosx > =
a0
2

< 1, cosx > +

∞∑
n=1

an < cos(nx), cosx > +bn < sin(nx), cosx >

= a1 < cosx, cosx >= a1 || cosx||2 = a1π

< f, sinx > =
a0
2

< 1, sinx > +
∞∑

n=1

an < cos(nx), sinx > +bn < sin(nx), sinx >

= b1 < sinx, sinx >= b1 || sinx||2 = b1π

Hence

a1 =
< f, cosx >

π
=

1

π

∫ 2π

0

f(x) cosxdx ;

b1 =
< f, sinx >

π
=

1

π

∫ 2π

0

f(x) sinxdx .

Similar arguments give

ak =
< f, cos kx >

|| cos kx||2
=

1

π

∫ 2π

0

f(x) cos(kx)dx ;

bk =
< f, sin kx >

|| sin kx||2
=

1

π

∫ 2π

0

f(x) sin kxdx .

We have therefore established the association

f(x) ∼ a0
2

+
∞∑

n=1

an cos(nx) + bn sin(nx)
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for a 2π-periodic function f ∈ C0
p(R). The associated series is called the Fourier

series of f . The coefficients are given by

a0 =
1

π

∫ 2π

0

f(x)dx

ak =
1

π

∫ 2π

0

f(x) cos(kx)dx for k = 1, 2, · · ·

bk =
1

π

∫ 2π

0

f(x) sin(kx)dx for k = 1, 2, · · ·

Remark 2. We have worked the integrations over the interval [0, 2π]. Because
of the 2π-periodicity, we could have used any interval of length 2π. Hence, for any
real number a, we also have

a0 =
1

π

∫ a+2π

a

f(x)dx

ak =
1

π

∫ a+2π

a

f(x) cos(kx)dx for k = 1, 2, · · ·

bk =
1

π

∫ a+2π

a

f(x) sin(kx)dx for k = 1, 2, · · ·

In many situations with symmetry, it is useful to take a = −π. We have then

a0 =
1

π

∫ π

−π

f(x)dx

ak =
1

π

∫ π

−π

f(x) cos(kx)dx for k = 1, 2, · · ·

bk =
1

π

∫ π

−π

f(x) sin(kx)dx for k = 1, 2, · · ·

Remark 3. By using properties of even and odd functions, we have the following.
If F is even, then the functions F (x) cos(kx) are even and the functions F (x) sin(kx)
are odd. If G is odd, then the functions G(x) cos(kx) are odd and the functions
G(x) sin(kx) are even.

The Fourier coefficients of an even function F are

a0 =
1

π

∫ π

−π

F (x)dx =
2

π

∫ π

0

F (x)dx

ak =
1

π

∫ π

−π

F (x) cos(kx)dx =
2

π

∫ π

0

F (x) cos(kx)dx for k = 1, 2, · · ·

bk =
1

π

∫ π

−π

F (x) sin(kx)dx = 0 for k = 1, 2, · · ·

The Fourier coefficients of an odd function G are

a0 =
1

π

∫ π

−π

G(x)dx = 0

ak =
1

π

∫ π

−π

G(x) cos(kx)dx = 0 for k = 1, 2, · · ·

bk =
1

π

∫ π

−π

G(x) sin(kx)dx =
2

π

∫ π

0

G(x) sin(kx) for k = 1, 2, · · ·
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The Fourier series of an even function F and an odd function G are:

F (x) ∼ a0
2

+
∞∑

n=1

an cos(nx) , an =
2

π

∫ π

0

F (x) cos(nx)dx ;

G(x) ∼
∞∑

n=1

bn sin(nx) , bn =
2

π

∫ π

0

G(x) sin(nx)dx .

7. Examples

We give examples of Fourier series of some simple functions

Example 1. Let f(x) be the 2π-periodic function defined on [−π, π] by f(x) = |x|.
Hence the graph of f is the triangular wave. Note that f is an even function and

π−π

π

Figure 9. Triangular wave

so its Fourier series contains only the cosine terms (bn = 0 for every n ∈ Z+). The
coefficients of the cosines are:

π

2
a0 =

∫ π

0

xdx =
π2

2
;

π

2
an =

∫ π

0

x cos(nx)dx =

(
x
sin(nx)

n

)π

0

−
∫ π

0

sin(nx)

n
dx

=

(
cos(nx)

n2

)π

0

=
cos(nπ)− 1

n2

=
(−1)n − 1

n2

Hence,

a0 = π , and an =
2((−1)n − 1)

πn2
=

 0 if n = 2k (even)
−4

π(2k + 1)2
if n = 2k + 1 (odd)

We have obtained the associated Fourier series of f on [0, 2π]

|x| ∼ π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
.

Example 2. Let f(x) be the 2π-periodic function defined on [−π, π] by

f(x) =

{
1 if 0 < x < π ;
−1 if − π < x < 0 .

Hence the graph of f is the rectangular wave. Note that f is an odd function and
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π 2π−π−2π

1 

−1 

Figure 10. Rectangular wave

so its Fourier series contains only the sine terms (a0 = 0 and an = 0 for every
n ∈ Z+). The coefficients of the sines are:

π

2
bn =

∫ π

0

sin(nx)dx =

(
− cos(nx)

n

)π

0

=
1− (−1)n

n

Hence,

bn =
2(1− (−1)n)

πn
=

 0 if n = 2k (even)
4

π(2k + 1)
if n = 2k + 1 (odd)

We have obtained the associated Fourier series of f on [0, 2π]

f(x) ∼ 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
.

Example 3. Let f(x) be the 2π-periodic function defined on [−π, π] by

f(x) =

{
x if 0 < x < π ;
0 if − π < x < 0 .

The graph of f is the given below. The function f is neither even nor odd and so

−2π −π π 2π
0 

Figure 11. Graph of f

its Fourier series contains sines and cosines terms. Its Fourier coefficients are:

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π

0

xdx =
π

2
;

an =
1

π

∫ π

−π

f(x) cos(nx)dx =
1

π

∫ π

0

x cos(nx)dx =
(−1)n − 1

πn2

bn =
1

π

∫ π

−π

f(x) sin(nx)dx =
1

π

∫ π

0

x sin(nx)dx =
(−1)n−1

n
.

We have

f(x) ∼ π

4
− 2

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
+

∞∑
j=1

(−1)j−1 sin jx

j
.
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8. The complex exponential form of Fourier series

Recall that the cosine and sine function can be expressed in terms of the expo-
nential as

{
eiθ = cos θ + i sin θ
e−iθ = cos θ − i sin θ


cos θ =

eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i
= −i

eiθ − e−iθ

2

Now we can rewrite the trigonometric series

a0
2

+
∞∑

n=1

an cosnx+ bn sinnx ,

with real coefficients in terms of these exponentials. For this, we use

an cosnx+ bn sinnx = an
einx + e−inx

2
− ibn

einx − e−inx

2

=
an − ibn

2
einx +

an + ibn
2

e−inx

= cne
inx + cne

−inx

where cn denotes the complex conjugate of cn
For a 2π-periodic, R-valued function function f ∈ C0

p(R), we have

f(x) ∼ c0 +
∞∑

n=1

cne
inx + cneinx

with

cn =
an − ibn

2

=
1

2π

∫ 2π

0

f(x) (cosnx− i sinnx) dx

=
1

2π

∫ 2π

0

f(x)e−inxdx

This complex form of the Fourier is equivalent to the one given with cosines and
sines. In many applications it is easier and more convenient to use the complex
form.

Note that the above association take the form

f(x) ∼ c0 + 2
∞∑

n=1

Re
(
cne

inx
)

where Re(C) denotes the real part of the complex number C.

Example 1. Let f be the 2π-periodic function defined over the interval (−π, π)
by

f(x) =

{
0 if − π < x < 0
x2 if 0 < x < π
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To compute the Fourier coefficients, we use integration by parts.∫
x2e−inxdx =

x2e−inx

−in
−
∫

2xe−inx

−in
dx

=
x2e−inx

−in
− 2xe−inx

(−in)2
+

∫
2e−inx

(−in)2
dx

=
x2e−inx

−in
− 2xe−inx

(−in)2
+

2e−inx

(−in)3
+ C

= i
x2e−inx

n
+

2xe−inx

n2
− i

2e−inx

n3
+ C

We find then the Fourier coefficients

c0 =
1

2π

∫ π

−π

=
1

2π

∫ π

0

x2dx =
π2

6

and for n ≥ 1,

cn =
1

2π

∫ π

−π

f(x)e−inxdx =
1

2π

∫ π

0

x2e−inxdx

=
1

2π

(
i
x2e−inx

n
+

2xe−inx

n2
− i

2e−inx

n3

)π

0

It gives

cn =
(−1)n

n2
+ i

(
π(−1)n

2n
+

1− (−1)n

πn3

)
The Fourier series of f is therefore

π2

6
+ 2

∞∑
n=1

Re
[
cne

inx
]

We can rewrite the Fourier series in terms of cosine and sine. First

cne
inx =

(−1)n

n2
cosnx−

(
π(−1)n

2n
+

1− (−1)n

πn3

)
sinnx+

+i

(
(−1)n

n2
sinnx−

(
π(−1)n

2n
+

1− (−1)n

πn3

)
cosnx

)
The Fourier series of f is:

π2

6
+ 2

∞∑
n=1

(−1)n

n2
cosnx−

(
π(−1)n

2n
+

1− (−1)n

πn3

)
sinnx

Example 2. Let f be the 2π-periodic function defined on [0, 2π] as f(x) = ex.
The n-th Fourier coefficient of f is

cn =
1

2π

∫ 2π

0

exe−inxdx =
1

2π

∫ 2π

0

e(1−in)xdx

=
1

2π

(
e(1−in)x

1− in

)x=2π

x=0

=
(e2π − 1)

2π

1

1− in
=

(e2π − 1)

2π

1 + in

1 + n2

Hence (after a calculation), we find

Re(cne
inx) =

(e2π − 1)

2π

[
cosnx

1 + n2
− n sinnx

1 + n2

]
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The Fourier series of f is therefore,

ex ∼ c0 + 2
∞∑

n=1

Re(cne
inx)

∼ (e2π − 1)

2π

[
1 + 2

∞∑
n=1

cosnx

1 + n2
− n sinnx

1 + n2

]
9. Exercises

In each exercise, find the fourier series of the 2π-periodic function f that is given
by

Exercise 1. f(x) = x for −π < x < π.

Exercise 2. f(x) = π − x for 0 < x < 2π.

Exercise 3. f(x) = cos2 x

Exercise 4. f(x) =

{
−x if − π < x < 0
0 if 0 < x < π

Exercise 5. f(x) = | cosx|

Exercise 6. f(x) = | sinx|

Exercise 7. f(x) =

{
0 if − π < x < 0
sinx if 0 < x < π

Exercise 8. f(x) =

{
1/(2d) if |x| < d
0 if d < |x| < π

with d a positive constant.

Exercise 9. f(x) = edx for −π < x < π, where d a positive constant

Exercise 10. f(x) = coshx for −π < x < π.

Exercise 11. f(x) = coshx for 0 < x < 2π.

Exercise 12. f(x) = coshx for 0 < x < 2π.

Exercise 13. f(x) =

{
(a− |x|)/(2d) if |x| < d
0 if d < |x| < π

with d a positive constant.


