
FOURIER SERIES PART II:

CONVERGENCE

We have seen in the previous note how to associate to a 2π-periodic function f
a Fourier series

a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx) .

Now we are going to investigate how the Fourier series represents f . Let us first
introduce the following notation. For N = 0, 1, 2, · · · , we denote by SNf(x) the
N -th partial sum of the Fourier series of f . That is,

SNf(x) =
a0
2

+
N∑

n=1

an cos(nx) + bn sin(nx) .

Hence

S0f(x) =
a0
2

;

S1f(x) =
a0
2

+ a1 cosx+ b1 sinx ;

S2f(x) =
a0
2

+ a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x

...

The infinite series is therefore limN→∞ SNf . The Fourier series converges at a
point x if limN→∞ SNf(x) exists.

We consider the functions and their Fourier series of examples 1, 2, and 3 of the
previous note and see how the graphs of partial sums SNf compare to those of f .

1. Examples

Example 1. For f(x) = |x| on [−π, π], we found

|x| ∼ π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2

Thus,

S0f(x) =
π

2
;

S1f(x) =
π

2
− 4 cosx

π
;

S3f(x) =
π

2
− 4 cosx

π
− 4 cos 3x

9π
;

S5f(x) =
π

2
− 4 cosx

π
− 4 cos 3x

9π
− 4 cos 5x

25π

It appears that as N gets larger, the graph of SNf gets closer to that of f .
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Figure 1. Graphs of SNf for N = 0, 1, 3, 9.

Example 2. For the 2π-periodic function f of example 2 defined by

f(x) =

{
1 if 0 < x < π ;
−1 if − π < x < 0

, we found the Fourier series

f(x) ∼ 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
.

Thus,

S1f(x) =
4 sinx

π
;

S3f(x) =
4 sinx

π
+

4 sin 3x

3π
;

S5f(x) =
4 sinx

π
+

4 sin 3x

3π
+

4 sin 5x

5π

S7f(x) =
4 sinx

π
+

4 sin 3x

3π
+

4 sin 5x

5π
+

4 sin 7x

7π

Again it appears that as N increases SNf gets closer to f at the points where f
is continuous.

Example 3. For the 2π-periodic function f of example 3 defined by

f(x) =

{
x if 0 < x < π ;
0 if − π < x < 0 .

with Fourier series

π

4
− 2

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
+

∞∑
j=1

(−1)j−1 sin jx

j
.
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Figure 2. Graphs of SNf for N = 1, 3, 5, 7, 9, 27.

The first partial sums are

S0f(x) =
π

4

S1f(x) =
π

4
− 2 cosx

π
+ sinx ;

S2f(x) =
π

4
− 2 cosx

π
+ sinx− sin 2x

2
;

S3f(x) =
π

4
− 2 cosx

π
+ sinx− sin 2x

2
− 2 cos 3x

9π
+

sin 3x

3
.

2. Pointwise Convergence of Fourier series

The above examples suggest that the N -th partial sums SNf converge to f . This
is indeed the case at each point where f is continuous. At each discontinuity, the
partial sums approach the average value of f . To be precise, we define the average
of f at a point x0 as

fav(x0) =
f(x+

0 ) + f(x−
0 )

2
=

1

2

(
lim

x→x+
0

f(x) + lim
x→x−

0

f(x)

)
.

Hence if f is continuous at x0, then fav(x0) = f(x0). For example for the 2π-

periodic function f of example 3 defined by f(x) =

{
x if 0 < x < π ;
0 if − π < x < 0 .

we
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Figure 3. Graphs of SNf for N = 0, 1, 2, 3, 10, 15.

have fav(x) = f(x) for x ̸= (2k + 1)π (with k ∈ Z) and

fav((2k + 1)π) =
f((2k + 1)π+) + f((2k + 1)π−)

2
=

π

2
k = ±1, ±2, ±3, · · ·

The graph of fav is the following

Figure 4. Graphs of fav.

We have the following theorem.

Theorem (Pointwise convergence) Let f ∈ C1
p(R) be 2π-periodic. Then the Fourier

series of f converges to fav at each point of R. That is,

fav(x) =
a0
2

+
∞∑

n=0

an cosnx+ bn sinnx ,
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where

a0 =
1

π

∫ π

−π

f(x)dx , and
an
bn

}
=

1

π

∫ π

−π

f(x)

{
cosnx
sinnx

dx

Again this means that at all points x where f is continuous, we have

f(x) =
a0
2

+
∞∑

n=0

an cosnx+ bn sinnx ,

and at the points x0 where f is discontinuous we have

f(x+
0 ) + f(x−

0 )

2
=

a0
2

+

∞∑
n=0

an cosnx0 + bn sinnx0 .

To prove this theorem, we will need two lemmas

Lemma 1. (Riemann-Lebesgue Lemma) If f is piecewise smooth on an interval
[a, b], then

lim
r→∞

∫ b

a

f(x) cos(rx)dx = 0

lim
r→∞

∫ b

a

f(x) sin(rx)dx = 0

Proof. Since f is piecewise smooth, then there are finitely many points

c0 = a < c1 < c2 < · · · < cn−1 < b = cn

such that both f and its derivative f ′ are continuous in each interval (cj−1, cj)
(j = 1, · · · , n). Furthermore, f(c±k ) and f ′(c±k ) are finite. Thus the integrals of f
and f ′ exist in each subinterval. We have,∫ b

a

f(x) cos(rx)dx =

∫ c1

c0

f(x) cos(rx)dx+ · · ·+
∫ cn

cn−1

f(x) cos(rx)dx

=

n∑
j=1

∫ cj

cj−1

f(x) cos(rx)dx

We use integration by parts in each subinterval [cj−1, cj ] to obtain∫ cj

cj−1

f(x) cos(rx)dx =

(
f(x) sin(rx)

r

)cj

cj−1

−
∫ cj

cj−1

f ′(x)
sin(rx)

r
dx

( we are assuming that r > 0). Let M > 0 such that

sup
a<x<b

|f(x)| < M and sup
a<x<b

|f ′(x)| < M .

Then ∣∣∣∣∣
(
f(x) sin(rx)

r

)cj

cj−1

∣∣∣∣∣ ≤
∣∣∣∣f(cj) sin(rcj)r

∣∣∣∣+ ∣∣∣∣f(cj−1) sin(rcj−1)

r

∣∣∣∣ ≤ 2M

r

and ∣∣∣∣∣
∫ cj

cj−1

f ′(x)
sin(rx)

r
dx

∣∣∣∣∣ ≤
∫ cj

cj−1

∣∣∣∣f ′(x)
sin(rx)

r

∣∣∣∣ dx ≤ M(cj − cj−1)

r
.
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It follows that∣∣∣∣∣
∫ b

a

f(x) cos(rx)dx

∣∣∣∣∣ ≤
n∑

j=1

(
2M

r
+

M(cj − cj−1)

r

)
≤ 2Mn+ (b− a)

r
.

Since
2Mn+ (b− a)

r
→ 0 as r → ∞, then

lim
r→∞

∫ b

a

f(x) cos(rx)dx = 0.

A similar argument gives the second limit of the lemma.

Lemma 2. for every x ∈ R, x ̸= 2kπ with k ∈ Z, we have the identity

1

2
+ cosx+ cos(2x) + · · ·+ cos(Nx) =

sin(N +
1

2
)x

2 sin
x

2

.

Proof. Set T =
1

2
+ cosx+ cos(2x) + · · ·+ cos(Nx). By using

cos θ =
eiθ + e−iθ

2
,

we can rewrite T as

T =
1

2
+

N∑
j=1

eijx + e−ijx

2
=

1

2

1 +

N∑
j=1

eijx +

N∑
j=1

e−ijx


Note that

∑N
j=1 e

ijx and
∑N

j=1 e
−ijx are geometric sums. The first with ratio eix

and the second with ratio e−ix. Since x ̸= 2kπ these ratios are different from 1 and

N∑
j=1

eijx =
eix(1− eiNx)

1− eix
=

eix − ei(N+1)x

1− eix

and
N∑
j=1

e−ijx =
e−ix(1− e−iNx)

1− e−ix
=

e−ix − e−i(N+1)x

1− e−ix
.

After reducing to the same denominator, the expression for T becomes

T =
eiNx + e−iNx − ei(N+1)x − e−i(N+1)x

2(2− (eix + e−ix))
=

cosNx− cos(N + 1)x

2(1− cosx)
.

Now use the trigonometric identities

cosNx = cos((N +
1

2
)x− x

2
) = cos((N +

1

2
)x) cos

x

2
+ sin((N +

1

2
)x) sin

x

2

cos(N + 1)x = cos((N +
1

2
)x+

x

2
) = cos((N +

1

2
)x) cos

x

2
− sin((N +

1

2
)x) sin

x

2
.

Hence,

cosNx− cos(N + 1)x = 2 sin((N +
1

2
)x) sin

x

2
.

We also have

1− cosx = 2 sin2
x

2
.
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Therefore

T =
2 sin((N +

1

2
)x) sin

x

2

4 sin2
x

2

=
sin(N + 1

2 )x

2 sin
x

2

.

After these two lemmas, we start the proof of the convergence of Fourier series.
Let SNf be the N -th partial sum of the Fourier series of f . That is,

SNf(x) =
a0
2

+
N∑

n=1

an cos(nx) + bn sin(nx) .

We would like to prove that

lim
N→∞

SNf(x) = fav(x) =
f(x+) + f(x−)

2
.

We are going to use Lemma 2 and the definition of the Fourier coefficients aj and
bj to rewrite SNf in an integral form. Recall that

aj =
1

π

∫ π

−π

f(t) cos jtdt , j = 0, 1, 2, · · ·

bj =
1

π

∫ π

−π

f(t) sin jtdt , j = 1, 2, 3, · · ·

We can rewrite SNf as

SNf(x) =
1

2π

∫ π

−π

f(t) cos jtdt+

+
N∑
j=1

(
1

π

∫ π

−π

f(t) cos jtdt cos jx+
1

π

∫ π

−π

f(t) sin jtdt sin jx

)

=
1

π

∫ π

−π

f(t)

1

2
+

N∑
j=1

(cos jt cos jx+ sin jt sin jx)

 dt

The trigonometric identity cos jt cos jx+ sin jt sin jx = cos j(t− x) gives

SN (x) =
1

π

∫ π

−π

f(t)

1

2
+

N∑
j=1

cos j(t− x)

 dt

Now Lemma 2 can be used to obtain

SN (x) =

∫ π

−π

f(t)

sin

[
(N +

1

2
)(t− x)

]
2π sin

[
t− x

2

] dt

Define the function DN (s), called the Dirichlet kernel, by

DN (s) =


sin(N +

1

2
)s

2π sin
s

2

if s ̸= 2kπ , k ∈ Z ;

2N + 1

2π
if s = 2kπ k ∈ Z .

Note that DN : R −→ R is an even and continuous function. That DN is contin-
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Figure 5. Graphs of D5, D10, D15 and D20 over the interval [−π, π]

uous at a point s0 = 2kπ follows from L’Hopital’s rule:

lim
s→2kπ

DN (s) = lim
s→2kπ

(N +
1

2
) cos(N +

1

2
)s

π cos
s

2

=
2N + 1

2π
= DN (2kπ) .

Furthermore, DN is 2π-periodic. We will use the integral of DN . We have from
Lemma 2 that∫ π

0

DN (s)ds =
1

π

∫ π

0

(
1

2
+ cos s+ cos(2s) + · · ·+ cos(Ns)

)
ds =

1

2

(since

∫ π

0

cosjxdx = 0 for j = 1, 2, 3, · · · ). We also have

∫ 0

−π

DN (s)ds =
1

2

since the function DN is even.
So far we proved that

SNf(x) =

∫ π

−π

f(t)DN (t− x)dt .
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By using the substitution s = t − x, and by using the 2π-periodicity of f and of
DN , we rewrite SNf as

SNf(x) =

∫ π−x

−π−x

f(x+ s)DN (s)ds =

∫ π

−π

f(x+ s)DN (s)ds .

Since

SNf(x) =

∫ 0

−π

f(x+ s)DN (s)ds +

∫ π

0

f(x+ s)DN (s)ds ,

then to prove that limN→∞ SNf(x) = fav(x), it is enough to prove that

lim
N→∞

∫ π

0

f(x+ s)DN (s)ds =
f(x+)

2
and

lim
N→∞

∫ 0

−π

f(x+ s)DN (s)ds =
f(x−)

2
.

For this, we consider the functions h(s) and k(s) defined in [−π, π] by

h(s) =


f(x+ s)− f(x−)

s
for s < 0

f(x+ s)− f(x+)

s
for s > 0

and k(s) =

{ s

2 sin(s/2)
for s ̸= 0

1 for s = 0

I leave it as an exercise for you to verify that k and its derivative are continuous on
[−π, π] (use L’Hopital’s rule at s = 0). For the function h, it is piecewise smooth
in each closed interval not containing s = 0. At s = 0, we have

h(0−) = lim
s→0−

f(x+ s)− f(x−)

s
= f ′(x−)

h(0+) = lim
s→0+

f(x+ s)− f(x+)

s
= f ′(x+)

Hence h is piecewise continuous on [−π, π].

Claim. We have the following

lim
N→∞

∫ π

0

h(s)k(s) sin(N +
1

2
)s ds = 0

lim
N→∞

∫ 0

−π

h(s)k(s) sin(N +
1

2
)s ds = 0

Proof of claim. We prove the first limit. Let ϵ > 0. Since, the integrand is
piecewise continuous and uniformly bounded, we can find δ > 0 such that∣∣∣∣∣

∫ δ

0

h(s)k(s) sin(N +
1

2
)s ds

∣∣∣∣∣ < ϵ ∀N ∈ Z+.

The integrand is piecewise smooth on the interval [δ, π]. Lemma 1 implies that

lim
N→∞

∫ π

δ

h(s)k(s) sin(N +
1

2
)s ds = 0.

Hence,

lim
N→∞

∫ π

0

h(s)k(s) sin(N +
1

2
)s ds ≤ ϵ

Since ϵ > 0 is arbitrary, then the limit is 0. The second limit of the claim is proved
in a similar way and is left as an exercise.
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End of the proof of the theorem. By using

∫ π

0

DN (s)ds =
1

2
, we get∫ π

0

f(x+ s)DN (s)ds− f(x+)

2
=

∫ π

0

(f(x+ s)− f(x+))DN (s)ds

=
1

π

∫ π

0

f(x+ s)− f(x+)

s

s

2 sin(s/2)
sin(N +

1

2
)sds

=
1

π

∫ π

0

h(s)k(s) sin(N +
1

2
)sds

It follows from this and the claim that

lim
N→∞

∫ π

0

f(s+ u)DN (s)ds =
f(x+)

2
.

A similar argument gives

lim
N→∞

∫ 0

−π

f(s+ u)DN (s)ds =
f(x−)

2

and completes the proof of the theorem.

Example 1. The 2π-periodic function f defined on [−π, π] by f(x) = |x| (the
triangular wave function) is continuous on R. It is therefore equal to its Fourier
series for all x ∈ R. In particular,

|x| = π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
, ∀x ∈ [−π, π] .

Fourier can be used to evaluate numerical series. For x = 0, we obtain

0 =
π

2
− 4

π

∞∑
j=0

cos(2j + 1)0

(2j + 1)2

Hence,

1 +
1

32
+

1

52
+

1

72
+ · · · = π2

8

Example 2. The 2π-periodic function f defined on [−π, π] by f(x) = 1 if 0 < x <
π and f(x) = −1 for −π < x < 0 is continuous everywhere except at the points kπ,
with k ∈ Z. Thus f(x) equal its Fourier series for x ̸= kπ. In particular

1 =
4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
, ∀x ∈ (0, π) .

For x = kπ, we have fav(kπ) = 0 which is the value of the Fourier series when
x = kπ. We can use this series to evaluate the alternating series

∑∞
j=0(−1)j/(2j+1).

Indeed, for x =
π

2
, we get

1 =
4

π

∞∑
j=0

sin(2j + 1)π/2

(2j + 1)
=

4

π

∞∑
j=0

(−1)j

(2j + 1)
.

Hence,

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.
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Example 3. The 2π-periodic function f defined on [−π, π] by f(x) = x if 0 ≤
x < π and f(x) = 0 for −π < x ≤ 0 is continuous everywhere except at the points
(2k+1)π, with k ∈ Z. The Fourier series of f is therefore equal to f(x) everywhere
except at the points (2k + 1)π. We have then,

π

4
− 2

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
+

∞∑
j=1

(−1)j−1 sin jx

j
=

{
x if 0 ≤ x < π
0 if − π < x ≤ 0

.

At the points (2k + 1)π, we have the average value fav((2k + 1)π) = π/2. At such
points the Fourier series is π/2.

3. Differentiation of Fourier Series

When dealing with series of functions, one has to be careful on whow to use
termwise differentiation. Consider the function of example 2 defined by f(x) = 1
for 0 < x < π and f(x) = −1 for −π < x < 0. We found the Fourier series of f .
We have in particular

1 =
4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
, ∀x ∈ (0, π) .

We are tempted to differentiate and write

0 =
4

π

∞∑
j=0

cos(2j + 1)x .

But this cannot be the case since the series diverges. To be able to use term by
term differentiation we need an extra condition on f . More precisely, we have

Theorem. Let f be 2π-periodic and continuous function on R such that its deriv-
ative f ′ is piecewise smooth. Let a0, a1, b1, a2, b2, · · · , be the Fourier coefficients
of f . Then the Fourier coefficients a′0, a

′
1, b

′
1, a

′
2, b

′
2, · · · of f ′ are

a′0 = 0, a′n = nbn, b′n = −nan

Remark. Under the hypotheses of the theorem, we have term by term differenti-
ation. So if f is continuous, 2π-periodic and f ′ is piecewise smooth, then

f(x) =
a0
2

+
∞∑

n=0

an cosnx+ bn sinnx

f ′(x) ∼
∞∑

n=0

nbn cosnx− nan sinnx

Claim. If g is continuous on an interval [a, b] and g′ is piecewise continuous on
[a, b], then ∫ b

a

g′(x)dx = g(b)− g(a) .
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Proof of the claim. Let c0 = a < c1 < c2 < · · · < cn = b be the possible jump
discontinuities of g′. Then,∫ b

a

g′(x)dx =
n∑

j=1

∫ cj

cj−1

g′(x)dx

=
n∑

j=1

[
g(c−j )− g(c+j−1)

]
=

n∑
j=1

[g(cj)− g(cj−1)]

= (g(c1)− g(c0)) + (g(c2)− g(c1)) + · · ·+ (g(cn)− g(cn−1))
= g(cn)− g(c0) = g(b)− g(a) .

Proof of theorem. We use the claim to compute the Fourier coefficients of f ′

a′0 =
1

π

∫ 2π

0

f ′(x)dx =
f(2π)− f(0)

π
= 0

(since f is 2π-periodic). For an (n ≥ 1) we use integration by parts

a′n =
1

π

∫ 2π

0

f ′(x) cosnxdx

=

(
f(x) cosnx

π

)x=2π

x=0

+
1

π

∫ 2π

0

f(x)n sinnxdx

=
n

π

∫ 2π

0

f(x) sinnxdx = nbn

I leave it as an exercise for you to check that b′n = −nan.

Example. Consider the triangular wave function of Example 1 of the previous
section. It is defined on [−π, π] by f(x) = |x|. This function is continuous on R
and is 2π periodic. Furthermore its derivative f ′(x) is piecewise smooth: it is 1 for
0 < x < π and −1 for −π < x < 0. f ′ is the function of example 2 of the previous
section. We have found

|x| = π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
, ∀x ∈ [−π, π] .

and by the Theorem we can differentiate term by term to get

f ′(x) ∼ 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
.

4. Integration of Fourier Series

In general an antiderivative of a periodic function is not periodic. For example
f(x) = 1 is periodic (of any period) but its antiderivatives F (x) = x + C are not
periodic. The following lemma gives a necessary and sufficient condition for an
antiderivative to be periodic.

Lemma. Let f be a T -periodic and piecewise continuous function on R. The
antiderivative F of f defined by

F (x) =

∫ x

0

f(t)dt
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is T -periodic if and only if ∫ T

0

f(t)dt = 0 .

Proof. Suppose that f satisfies

∫ T

0

f(t)dt = 0. We need to show that F (x+ T ) =

F (x). We have

F (x+ T )− F (x) =

∫ x+T

0

f(t)dt−
∫ x

0

f(t)dt =

∫ x+T

x

f(t)dt =

∫ T

0

f(t)dt = 0.

Conversely, if the antiderivative is T -periodic, then

0 = F (T )− F (0) =

∫ T

0

f(t)dt .

We get the following result about term by term integration of Fourier series.

Theorem. Let f be a piecewise smooth and 2π-period function satisfying∫ 2π

0

f(x)dx = 0 ⇔ a0 = 0 .

Consider the antiderivative of f defined by F (x) =

∫ x

0

f(t)dt. Then the Fourier

series is F is obtained from that of f by termwise integration. That is, if

f(x) ∼
∞∑

n=1

an cosnx+ bn sinnx ,

Then,

F (x) = A0 +
∞∑

n=1

−bn
n

cosnx+
an
n

sinnx ,

where A0 =
∞∑

n=1

bn
n
.

Proof. The antiderivative F is continuous and it is also 2π-periodic (see Lemma).
Since F ′ = f is piecewise smooth, then we can apply the previous Theorem about
differentiation of Fourier series. Consider the Fourier series of F :

F (x) = A0 +
∞∑

n=1

An cosnx+Bn sinnx .

Then

F ′(x) ∼
∞∑

n=1

nBn cosnx− nAn sinnx

and so

(nBn = an, −nAn = bn) ⇔ (An =
−bn
n

, Bn =
an
n
)

The coefficient A0 can be found by using F (0) = 0 and equating it to the value of
the Fourier series at x = 0.
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Example. We start with the rectangular wave function of example 2 of the previous
section: f is defined by f(x) = 1 for 0 < x < π and f(x) = −1 for −π < x < 0 and
f is 2π-periodic function. We have found

f(x) ∼ 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
.

Since a0 = 0, we can integrate term by term to obtain the Fourier series of F (x) =∫ x

0

f(t)dt

F (x) = A0 −
4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
, ∀x ∈ [−π, π] .

with A0 =
4

π

∞∑
j=0

1

(2j + 1)2
. In fact F (x) = |x| for |x| ≤ π and A0 =

1

2π

∫ π

−π

|x|dx =

π

2
. We have recovered again

|x| = π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
, ∀x ∈ [−π, π] .

For the 2π-periodic function F (x) = |x| on [−π, π], termwise integration of its
Fourier series is not a pure trigonometric series but will contain an extra term, a

contribution from A0, since

∫ π

−π

F (x)dx ̸= 0. More precisely, for 0 < x < π, we

have ∫ x

0

tdt =

∫ x

0

π

2
dt− 4

π

∞∑
j=0

∫ x

0

cos(2j + 1)t

(2j + 1)2
dt ,

x2

2
=

πx

2
− 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)3

Thus, for 0 < x < π, we have

x2

2
− πx

2
= − 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)3
.

The series − 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)3
is the Fourier series of the 2π-periodic function G(x)

given on the interval [−π, π] by

G(x) =

∫ x

0

F (t)dt−A0x =

∫ x

0

|t|dt− πx

2
=

{
(x2 − πx)/2 if 0 < x < π
(−x2 − πx)/2 if − π < x < 0
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In fact this allows us to obtain an expansion of x2 over [0, π] by using the series
for x and for (x2 − πx)/2. We have

x2 = 2
x2 − πx

2
+ πx

= 2

− 4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)3

+ π

π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2


=

π2

2
− 4

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
+

2 sin(2j + 1)x

π(2j + 1)3
.

5. Uniform convergence of Fourier series

A sequence of functions gn(x) defined on an interval I is said to converge uni-
formly to a function g(x) on I if the following holds.

∀ϵ > 0, ∃N ∈ Z+, |gn(x)− g(x)| < ϵ, ∀x ∈ I, ∀n ≥ N.

This means that for any given ϵ > 0, we can find N that depends only on ϵ so that

g(x)−ε

g(x)+ε

g(x)

g
n
(x)

Figure 6. Graph of gn(x) between those of g(x)± ϵ

gn(x) is within ϵ from g(x) for all x ∈ I and for all n > N .
A sequence of functions hn(x) defined on an interval I is said to converge (point-

wise) to a function h(x) on I if the following holds.

∀x ∈ I, ∀ϵ > 0, ∃N ∈ Z+, |hn(x)− h(x)| < ϵ, ∀n ≥ N.

In the pointwise convergence N depends on ϵ and on x.
The uniform convergence is stronger than pointwise convergence. A particular

consequence of the uniform convergence is the following. If each gn is continuous
in an interval I and if gn −→ g uniformly in I, then g is also continuous.

A series of function
∞∑

n=1

fn(x) converges uniformly to a function f on an interval

I is the sequence of partial sums sn(x) =
n∑

j=1

fj(x) converges uniformly to f(x).

The following two propositions give sufficient conditions for the uniform conver-
gence of Fourier series.

Proposition 1. Let

a0
2

+
∞∑

n=1

an cosnx+ bn sinnx
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be the Fourier series of a piecewise smooth and 2π-periodic function f . If
∞∑

n=1

(|an|+

|bn|) < ∞, then the Fourier series converges uniformly.

Since the partial sums of the Fourier series are continuous, the proposition implies
that the limit of the Fourier series is a continuous function. Thus the function f
is continuous everywhere except possibly at removable discontinuities. This means
f(x+) = f(x−) everywhere. Note also that if f has a jump discontinuity at x0 (i.e.
f(x+

0 ) ̸= f(x−
0 )), then the Fourier series of f does not converge uniformly on any

interval containing x0.

Proposition 2. If a function f is continuous in R, is piecewise smooth, and
2π-periodic, then its Fourier series

a0
2

+

∞∑
n=1

an cosnx+ bn sinnx

converges uniformly to f on R.

6. Exercises

In the following exercises, a 2π-periodic function f is given on the interval
[−π, π]. (a.) Find the Fourier series of f : (b.) Find the intervals where f(x)
is equal to its Fourier series: (c.) Determine whether the Fourier series converges
uniformly

Exercise 1. f(x) =

 −1 if 0 < x < π/2
1 if − π/2 < x < 0
0 if π/2 < |x| < π

Exercise 2. f(x) = | sinx|. Use the Fourier series to evaluate
∞∑

n=1

1

4n2 − 1
.

Exercise 3. f(x) = | cosx|. Use the Fourier series to evaluate

∞∑
n=1

(−1)n−1

4n2 − 1
.

Exercise 4. f(x) = cos2 x (thing about a trig. identity)

Exercise 5. f(x) = sin2 x

Exercise 6. f(x) = x2. Use the Fourier series to evaluate
∞∑

n=1

1

n2
and

∞∑
n=1

(−1)n−1

n2

Exercise 7. f(x) = x(π − |x|). Use the Fourier series to evaluate
∞∑

n=1

(−1)n−1

(2n− 1)3
.

Exercise 8. Use the Fourier series for x2 that you found in exercise 6 to deduce
the fourier series of x3 − π2x on [−π, π] (use integration of Fourier series).

Exercise 9. Use the Fourier series you found in exercise 8. To deduce that

x4 − 2π2x2 = −7π4

15
+ 48

∞∑
n=1

(−1)n−1 cosnx

n4
for − π < x < π .
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Deduce the value of
∞∑

n=1

1

n4
.

Exercise 10. Suppose that f(x) has Fourier series
∞∑

n=1

e−n2

sinnx. Find the

Fourier series of f ′(x) and the Fourier series of f ′′(x) (justify your answer).

Appendix

In this appendix, we prove Propositions 1 and 2 about uniform convergence of
Fourier series. Given a series

∑
n fn(x) of functions, a practical test for uniform

convergence is the following.

Weierstrass M-Test. Given a series of functions
∑

n fn(x) on an interval I. If
there is a sequence of real numbers Mn ≥ 0 such that

|fn(x)| ≤ Mn , ∀x ∈ I, ∀n ∈ Z+

and if

∞∑
n=1

Mn < ∞ then the series

∞∑
n=1

fn(x) converges uniformly on I.

Schwartz Inequalities. Given series of real numbers
∞∑

n=1

αn and
∞∑

n=1

βn so that

∞∑
n=1

α2
n < ∞ and

∞∑
n=1

β2
n < ∞, then

∣∣∣∣∣
∞∑

n=1

αnβn

∣∣∣∣∣ ≤
( ∞∑

n=1

α2
n

)1/2( ∞∑
n=1

β2
n

)1/2

.

Given piecewise continuous functions f and g on an interval [a, b], then we have∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
(∫ b

a

f(x)2dx

)1/2(∫ b

a

g(x)2dx

)1/2

Proof. We prove the first inequality and leave the second as an exercise. The proof
is based on the following observation: if A, B, and C are real constants such that
Ax2 + 2Bx+ C ≥ 0, ∀x ∈ R, then necessarily
B2 −AC ≤ 0.

Now, let N ∈ Z+ and define AN , BN , and CN by

AN =

N∑
n=1

α2
n, BN =

N∑
n=1

αnβn, and CN =

N∑
n=1

β2
n .

For x ∈ R, we have

N∑
n=1

(xαn + βn)
2 = x2

N∑
n=1

α2
n + 2x

N∑
n=1

αnβn +
N∑

n=1

β2
n ≥ 0.

Thus,

ANx2 + 2BNx+ CN ≥ 0, ∀x ∈ R
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and the observation implies that B2
N ≤ ANCN . Since by hypothesis, limN→∞ AN

and limN→∞ BN are finite, we get (after letting N → ∞)( ∞∑
n=1

αnβn

)2

≤
∞∑

n=1

α2
n

∞∑
n=1

β2
n .

The Schwartz inequality is obtained by taking the square root of the above inequal-
ity.

Bessel’s inequality Let f be a 2π-periodic and piecewise continuous function with
Fourier series

a0
2

+
∞∑

n=1

an cosnx + bn sinnx .

Then
a20
4

+
∞∑

n=1

a2n + b2n
2

≤ 1

2π

∫ 2π

0

f(x)2dx .

Proof. Let SNf be the N -th partial sum of the Fourier series of f . We have

||f(x)− SNf(x)||2 =< f − SNf, f − SNf >= ||f ||2 − 2 < f, SNf > +||SNf ||2 .

Now

f(x)SNf(x) =
a0
2
f(x) +

N∑
n=1

an cos(nx)f(x) + bn sin(nx)f(x) .

To find < f, SNf >, we integrate both sides from 0 to 2π and use the fact that

a0 =
1

π

∫ 2π

0

f(x)dx,
an
bn

}
=

1

π

∫ 2π

0

f(x)

{
cosnx
sinnx

dx

to obtain

< f, SNf >= 2π

(
a20
4

+

N∑
n=1

a2n + b2n
2

)
.

To find ||SNf ||2, we use the orthogonality of the trigonometric system to obtain∫ 2π

0

SNf(x)2dx = 2π
a20
4

+

N∑
n=1

a2n|| cosnx||2 + b2n|| sinnx||2

= 2π

(
a20
4

+
N∑

n=1

a2n + b2n
2

)
.

These equalities imply that

0 ≤ ||f(x)− SNf(x)||2 = ||f ||2 − 2π

(
a20
4

+

N∑
n=1

a2n + b2n
2

)
and then

a20
4

+
N∑

n=1

a2n + b2n
2

≤ 1

2π
||f ||2 =

1

2π

∫ 2π

0

f(x)2dx .

The Bessel’s inequality follows by letting N → ∞.

Proof of Proposition 1. Suppose that the Fourier coefficients of f satisfy∑
n |an| + |bn| < ∞. We use the Weierstrass M-test to show that the Fourier
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series (a0/2) +
∑

n(an cosnx + bn sinnx) converges uniformly on R. For this, we
just need to take Mn = |an|+ |bn| and observe that

|an cosnx+ bn sinnx| ≤ |an|+ |bn| .

Proof of Proposition 2. Suppose that f is continuous piecewise smooth and
2π-periodic. Let

a0
2

+

∞∑
n=1

an cosnx+ bn sinnx and

∞∑
n=1

a′n cosnx+ b′n sinnx

be the Fourier series of f and of f ′. We need to show that the first series converge
uniformly. For this it is enough to show that the series

∑
n |an| + |bn| < ∞ (the

Weierstrass M-test again would imply uniform convergence).
We apply Bessel’s inequality to f ′:

∞∑
n=1

(a′
2
n + b′

2
n) <

1

π

∫ 2π

0

f ′(x)2dx

We know that a′n = nbn and b′n = −nan. Hence,
∞∑

n=1

(|an|+ |bn|) =
∞∑

n=1

(
|a′n|
n

+
|b′n|
n

)
=

∞∑
n=1

1

n
(|a′n|+ |b′n|)

≤

( ∞∑
n=1

1

n2

)1/2( ∞∑
n=1

(|a′n|+ |b′n|)2
)1/2

(Schwartz inequality)

≤

( ∞∑
n=1

1

n2

)1/2

2

( ∞∑
n=1

(|a′n|2 + |b′n|2)

)1/2

≤

( ∞∑
n=1

1

n2

)1/2
2

π

∫ 2π

0

f ′(x)2dx

This proves the uniform convergence of the Fourier series of f .


