FOURIER SERIES PART II:

CONVERGENCE

We have seen in the previous note how to associate to a 2π-periodic function f a Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Now we are going to investigate how the Fourier series represents f. Let us first introduce the following notation. For $N=0,1,2, \cdots$, we denote by $S_{N} f(x)$ the N-th partial sum of the Fourier series of f. That is,

$$
S_{N} f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x) .
$$

Hence

$$
\begin{aligned}
& S_{0} f(x)=\frac{a_{0}}{2} \\
& S_{1} f(x)=\frac{a_{0}}{2}+a_{1} \cos x+b_{1} \sin x \\
& S_{2} f(x)=\frac{a_{0}}{2}+a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x
\end{aligned}
$$

The infinite series is therefore $\lim _{N \rightarrow \infty} S_{N} f$. The Fourier series converges at a point x if $\lim _{N \rightarrow \infty} S_{N} f(x)$ exists.

We consider the functions and their Fourier series of examples 1,2 , and 3 of the previous note and see how the graphs of partial sums $S_{N} f$ compare to those of f.

1. Examples

Example 1. For $f(x)=|x|$ on $[-\pi, \pi]$, we found

$$
|x| \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}
$$

Thus,

$$
\begin{aligned}
& S_{0} f(x)=\frac{\pi}{2} ; \\
& S_{1} f(x)=\frac{\pi}{2}-\frac{4 \cos x}{\pi} ; \\
& S_{3} f(x)=\frac{\pi}{2}-\frac{4 \cos x}{\pi}-\frac{4 \cos 3 x}{9 \pi} ; \\
& S_{5} f(x)=\frac{\pi}{2}-\frac{4 \cos x}{\pi}-\frac{4 \cos 3 x}{9 \pi}-\frac{4 \cos 5 x}{25 \pi}
\end{aligned}
$$

It appears that as N gets larger, the graph of $S_{N} f$ gets closer to that of f.

Figure 1. Graphs of $S_{N} f$ for $N=0,1,3,9$.

Example 2. For the 2π-periodic function f of example 2 defined by $f(x)=\left\{\begin{array}{ll}1 & \text { if } 0<x<\pi ; \\ -1 & \text { if }-\pi<x<0\end{array}\right.$, we found the Fourier series

$$
f(x) \sim \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)}
$$

Thus,

$$
\begin{aligned}
S_{1} f(x) & =\frac{4 \sin x}{\pi} \\
S_{3} f(x) & =\frac{4 \sin x}{\pi}+\frac{4 \sin 3 x}{3 \pi} \\
S_{5} f(x) & =\frac{4 \sin x}{\pi}+\frac{4 \sin 3 x}{3 \pi}+\frac{4 \sin 5 x}{5 \pi} \\
S_{7} f(x) & =\frac{4 \sin x}{\pi}+\frac{4 \sin 3 x}{3 \pi}+\frac{4 \sin 5 x}{5 \pi}+\frac{4 \sin 7 x}{7 \pi}
\end{aligned}
$$

Again it appears that as N increases $S_{N} f$ gets closer to f at the points where f is continuous.
Example 3. For the 2π-periodic function f of example 3 defined by
$f(x)=\left\{\begin{array}{ll}x & \text { if } 0<x<\pi ; \\ 0 & \text { if }-\pi<x<0 .\end{array}\right.$ with Fourier series

$$
\frac{\pi}{4}-\frac{2}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}+\sum_{j=1}^{\infty} \frac{(-1)^{j-1} \sin j x}{j}
$$

Figure 2. Graphs of $S_{N} f$ for $N=1,3,5,7,9,27$.
The first partial sums are

$$
\begin{aligned}
& S_{0} f(x)=\frac{\pi}{4} \\
& S_{1} f(x)=\frac{\pi}{4}-\frac{2 \cos x}{\pi}+\sin x ; \\
& S_{2} f(x)=\frac{2}{4}-\frac{2 \cos x}{\pi}+\sin x-\frac{\sin 2 x}{2} ; \\
& S_{3} f(x)=\frac{\pi}{4}-\frac{2 \cos x}{\pi}+\sin x-\frac{\sin 2 x}{2}-\frac{2 \cos 3 x}{9 \pi}+\frac{\sin 3 x}{3} .
\end{aligned}
$$

2. Pointwise Convergence of Fourier series

The above examples suggest that the N-th partial sums $S_{N} f$ converge to f. This is indeed the case at each point where f is continuous. At each discontinuity, the partial sums approach the average value of f. To be precise, we define the average of f at a point x_{0} as

$$
f_{a v}\left(x_{0}\right)=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}=\frac{1}{2}\left(\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right) .
$$

Hence if f is continuous at x_{0}, then $f_{a v}\left(x_{0}\right)=f\left(x_{0}\right)$. For example for the 2π periodic function f of example 3 defined by $f(x)=\left\{\begin{array}{ll}x & \text { if } 0<x<\pi ; \\ 0 & \text { if }-\pi<x<0 .\end{array}\right.$ we

Figure 3. Graphs of $S_{N} f$ for $N=0,1,2,3,10,15$.
have $f_{a v}(x)=f(x)$ for $x \neq(2 k+1) \pi$ (with $\left.k \in \mathbb{Z}\right)$ and

$$
f_{a v}((2 k+1) \pi)=\frac{f\left((2 k+1) \pi^{+}\right)+f\left((2 k+1) \pi^{-}\right)}{2}=\frac{\pi}{2} \quad k= \pm 1, \pm 2, \pm 3, \cdots
$$

The graph of $f_{a v}$ is the following

Figure 4. Graphs of $f_{a v}$.

We have the following theorem.
Theorem (Pointwise convergence) Let $f \in C_{p}^{1}(\mathbb{R})$ be 2π-periodic. Then the Fourier series of f converges to $f_{a v}$ at each point of \mathbb{R}. That is,

$$
f_{a v}(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

where

$$
\left.a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x, \text { and } \begin{array}{c}
a_{n} \\
b_{n}
\end{array}\right\}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\left\{\begin{array}{c}
\cos n x \\
\sin n x
\end{array} d x\right.
$$

Again this means that at all points x where f is continuous, we have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

and at the points x_{0} where f is discontinuous we have

$$
\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}=\frac{a_{0}}{2}+\sum_{n=0}^{\infty} a_{n} \cos n x_{0}+b_{n} \sin n x_{0}
$$

To prove this theorem, we will need two lemmas
Lemma 1. (Riemann-Lebesgue Lemma) If f is piecewise smooth on an interval $[a, b]$, then

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \int_{a}^{b} f(x) \cos (r x) d x=0 \\
& \lim _{r \rightarrow \infty} \int_{a}^{b} f(x) \sin (r x) d x=0
\end{aligned}
$$

Proof. Since f is piecewise smooth, then there are finitely many points

$$
c_{0}=a<c_{1}<c_{2}<\cdots<c_{n-1}<b=c_{n}
$$

such that both f and its derivative f^{\prime} are continuous in each interval $\left(c_{j-1}, c_{j}\right)$ $(j=1, \cdots, n)$. Furthermore, $f\left(c_{k}^{ \pm}\right)$and $f^{\prime}\left(c_{k}^{ \pm}\right)$are finite. Thus the integrals of f and f^{\prime} exist in each subinterval. We have,

$$
\begin{aligned}
\int_{a}^{b} f(x) \cos (r x) d x & =\int_{c_{0}}^{c_{1}} f(x) \cos (r x) d x+\cdots+\int_{c_{n-1}}^{c_{n}} f(x) \cos (r x) d x \\
& =\sum_{j=1}^{n} \int_{c_{j-1}}^{c_{j}} f(x) \cos (r x) d x
\end{aligned}
$$

We use integration by parts in each subinterval $\left[c_{j-1}, c_{j}\right]$ to obtain

$$
\int_{c_{j-1}}^{c_{j}} f(x) \cos (r x) d x=\left(\frac{f(x) \sin (r x)}{r}\right)_{c_{j-1}}^{c_{j}}-\int_{c_{j-1}}^{c_{j}} f^{\prime}(x) \frac{\sin (r x)}{r} d x
$$

(we are assuming that $r>0$). Let $M>0$ such that

$$
\sup _{a<x<b}|f(x)|<M \quad \text { and } \quad \sup _{a<x<b}\left|f^{\prime}(x)\right|<M
$$

Then

$$
\left|\left(\frac{f(x) \sin (r x)}{r}\right)_{c_{j-1}}^{c_{j}}\right| \leq\left|\frac{f\left(c_{j}\right) \sin \left(r c_{j}\right)}{r}\right|+\left|\frac{f\left(c_{j-1}\right) \sin \left(r c_{j-1}\right)}{r}\right| \leq \frac{2 M}{r}
$$

and

$$
\left|\int_{c_{j-1}}^{c_{j}} f^{\prime}(x) \frac{\sin (r x)}{r} d x\right| \leq \int_{c_{j-1}}^{c_{j}}\left|f^{\prime}(x) \frac{\sin (r x)}{r}\right| d x \leq \frac{M\left(c_{j}-c_{j-1}\right)}{r}
$$

It follows that

$$
\left|\int_{a}^{b} f(x) \cos (r x) d x\right| \leq \sum_{j=1}^{n}\left(\frac{2 M}{r}+\frac{M\left(c_{j}-c_{j-1}\right)}{r}\right) \leq \frac{2 M n+(b-a)}{r}
$$

Since $\frac{2 M n+(b-a)}{r} \rightarrow 0$ as $r \rightarrow \infty$, then

$$
\lim _{r \rightarrow \infty} \int_{a}^{b} f(x) \cos (r x) d x=0
$$

A similar argument gives the second limit of the lemma.
Lemma 2. for every $x \in \mathbb{R}, x \neq 2 k \pi$ with $k \in \mathbb{Z}$, we have the identity

$$
\frac{1}{2}+\cos x+\cos (2 x)+\cdots+\cos (N x)=\frac{\sin \left(N+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
$$

Proof. Set $T=\frac{1}{2}+\cos x+\cos (2 x)+\cdots+\cos (N x)$. By using

$$
\cos \theta=\frac{\mathrm{e}^{i \theta}+\mathrm{e}^{-i \theta}}{2}
$$

we can rewrite T as

$$
T=\frac{1}{2}+\sum_{j=1}^{N} \frac{\mathrm{e}^{i j x}+\mathrm{e}^{-i j x}}{2}=\frac{1}{2}\left(1+\sum_{j=1}^{N} \mathrm{e}^{i j x}+\sum_{j=1}^{N} \mathrm{e}^{-i j x}\right)
$$

Note that $\sum_{j=1}^{N} \mathrm{e}^{i j x}$ and $\sum_{j=1}^{N} \mathrm{e}^{-i j x}$ are geometric sums. The first with ratio $\mathrm{e}^{i x}$ and the second with ratio $\mathrm{e}^{-i x}$. Since $x \neq 2 k \pi$ these ratios are different from 1 and

$$
\sum_{j=1}^{N} \mathrm{e}^{i j x}=\frac{\mathrm{e}^{i x}\left(1-\mathrm{e}^{i N x}\right)}{1-\mathrm{e}^{i x}}=\frac{\mathrm{e}^{i x}-\mathrm{e}^{i(N+1) x}}{1-\mathrm{e}^{i x}}
$$

and

$$
\sum_{j=1}^{N} \mathrm{e}^{-i j x}=\frac{\mathrm{e}^{-i x}\left(1-\mathrm{e}^{-i N x}\right)}{1-\mathrm{e}^{-i x}}=\frac{\mathrm{e}^{-i x}-\mathrm{e}^{-i(N+1) x}}{1-\mathrm{e}^{-i x}}
$$

After reducing to the same denominator, the expression for T becomes

$$
T=\frac{\mathrm{e}^{i N x}+\mathrm{e}^{-i N x}-\mathrm{e}^{i(N+1) x}-\mathrm{e}^{-i(N+1) x}}{2\left(2-\left(\mathrm{e}^{i x}+\mathrm{e}^{-i x}\right)\right)}=\frac{\cos N x-\cos (N+1) x}{2(1-\cos x)}
$$

Now use the trigonometric identities

$$
\begin{aligned}
& \cos N x=\cos \left(\left(N+\frac{1}{2}\right) x-\frac{x}{2}\right)=\cos \left(\left(N+\frac{1}{2}\right) x\right) \cos \frac{x}{2}+\sin \left(\left(N+\frac{1}{2}\right) x\right) \sin \frac{x}{2} \\
& \cos (N+1) x=\cos \left(\left(N+\frac{1}{2}\right) x+\frac{x}{2}\right)=\cos \left(\left(N+\frac{1}{2}\right) x\right) \cos \frac{x}{2}-\sin \left(\left(N+\frac{1}{2}\right) x\right) \sin \frac{x}{2}
\end{aligned}
$$

Hence,

$$
\cos N x-\cos (N+1) x=2 \sin \left(\left(N+\frac{1}{2}\right) x\right) \sin \frac{x}{2}
$$

We also have

$$
1-\cos x=2 \sin ^{2} \frac{x}{2}
$$

Therefore

$$
T=\frac{2 \sin \left(\left(N+\frac{1}{2}\right) x\right) \sin \frac{x}{2}}{4 \sin ^{2} \frac{x}{2}}=\frac{\sin \left(N+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} .
$$

After these two lemmas, we start the proof of the convergence of Fourier series. Let $S_{N} f$ be the N-th partial sum of the Fourier series of f. That is,

$$
S_{N} f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x) .
$$

We would like to prove that

$$
\lim _{N \rightarrow \infty} S_{N} f(x)=f_{a v}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

We are going to use Lemma 2 and the definition of the Fourier coefficients a_{j} and b_{j} to rewrite $S_{N} f$ in an integral form. Recall that

$$
\begin{aligned}
& a_{j}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos j t d t, \quad j=0,1,2, \cdots \\
& b_{j}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin j t d t, \quad j=1,2,3, \cdots
\end{aligned}
$$

We can rewrite $S_{N} f$ as

$$
\begin{aligned}
S_{N} f(x)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \cos j t d t+ \\
& +\sum_{j=1}^{N}\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos j t d t \cos j x+\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin j t d t \sin j x\right) \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\left(\frac{1}{2}+\sum_{j=1}^{N}(\cos j t \cos j x+\sin j t \sin j x)\right) d t
\end{aligned}
$$

The trigonometric identity $\cos j t \cos j x+\sin j t \sin j x=\cos j(t-x)$ gives

$$
S_{N}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\left(\frac{1}{2}+\sum_{j=1}^{N} \cos j(t-x)\right) d t
$$

Now Lemma 2 can be used to obtain

$$
S_{N}(x)=\int_{-\pi}^{\pi} f(t) \frac{\sin \left[\left(N+\frac{1}{2}\right)(t-x)\right]}{2 \pi \sin \left[\frac{t-x}{2}\right]} d t
$$

Define the function $D_{N}(s)$, called the Dirichlet kernel, by

$$
D_{N}(s)= \begin{cases}\frac{\sin \left(N+\frac{1}{2}\right) s}{2 \pi \sin \frac{s}{2}} & \text { if } s \neq 2 k \pi, k \in \mathbb{Z} \\ \frac{2 N+1}{2 \pi} & \text { if } s=2 k \pi \quad k \in \mathbb{Z}\end{cases}
$$

Note that $D_{N}: \mathbb{R} \longrightarrow \mathbb{R}$ is an even and continuous function. That D_{N} is contin-

Figure 5. Graphs of D_{5}, D_{10}, D_{15} and D_{20} over the interval $[-\pi, \pi]$
uous at a point $s_{0}=2 k \pi$ follows from L'Hopital's rule:

$$
\lim _{s \rightarrow 2 k \pi} D_{N}(s)=\lim _{s \rightarrow 2 k \pi} \frac{\left(N+\frac{1}{2}\right) \cos \left(N+\frac{1}{2}\right) s}{\pi \cos \frac{s}{2}}=\frac{2 N+1}{2 \pi}=D_{N}(2 k \pi) .
$$

Furthermore, D_{N} is 2π-periodic. We will use the integral of D_{N}. We have from Lemma 2 that

$$
\int_{0}^{\pi} D_{N}(s) d s=\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{1}{2}+\cos s+\cos (2 s)+\cdots+\cos (N s)\right) d s=\frac{1}{2}
$$

(since $\int_{0}^{\pi} \cos j x d x=0$ for $\left.j=1,2,3, \cdots\right)$. We also have

$$
\int_{-\pi}^{0} D_{N}(s) d s=\frac{1}{2}
$$

since the function D_{N} is even.
So far we proved that

$$
S_{N} f(x)=\int_{-\pi}^{\pi} f(t) D_{N}(t-x) d t
$$

By using the substitution $s=t-x$, and by using the 2π-periodicity of f and of D_{N}, we rewrite $S_{N} f$ as

$$
S_{N} f(x)=\int_{-\pi-x}^{\pi-x} f(x+s) D_{N}(s) d s=\int_{-\pi}^{\pi} f(x+s) D_{N}(s) d s
$$

Since

$$
S_{N} f(x)=\int_{-\pi}^{0} f(x+s) D_{N}(s) d s+\int_{0}^{\pi} f(x+s) D_{N}(s) d s
$$

then to prove that $\lim _{N \rightarrow \infty} S_{N} f(x)=f_{a v}(x)$, it is enough to prove that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{0}^{\pi} f(x+s) D_{N}(s) d s=\frac{f\left(x^{+}\right)}{2} \text { and } \\
& \lim _{N \rightarrow \infty} \int_{-\pi}^{0} f(x+s) D_{N}(s) d s=\frac{f\left(x^{-}\right)}{2}
\end{aligned}
$$

For this, we consider the functions $h(s)$ and $k(s)$ defined in $[-\pi, \pi]$ by

$$
h(s)=\left\{\begin{array}{ll}
\frac{f(x+s)-f\left(x^{-}\right)}{s} & \text { for } s<0 \\
\frac{f(x+s)^{-f\left(x^{+}\right)}}{s} & \text { for } s>0
\end{array} \text { and } k(s)= \begin{cases}\frac{s}{2 \sin (s / 2)} & \text { for } s \neq 0 \\
1 & \text { for } s=0\end{cases}\right.
$$

I leave it as an exercise for you to verify that k and its derivative are continuous on $[-\pi, \pi]$ (use L'Hopital's rule at $s=0$). For the function h, it is piecewise smooth in each closed interval not containing $s=0$. At $s=0$, we have

$$
\begin{aligned}
& h\left(0^{-}\right)=\lim _{s \rightarrow 0^{-}} \frac{f(x+s)-f\left(x^{-}\right)}{s}=f^{\prime}\left(x^{-}\right) \\
& h\left(0^{+}\right)=\lim _{s \rightarrow 0^{+}} \frac{f(x+s)-f\left(x^{+}\right)}{s}=f^{\prime}\left(x^{+}\right)
\end{aligned}
$$

Hence h is piecewise continuous on $[-\pi, \pi]$.
Claim. We have the following

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{0}^{\pi} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s=0 \\
& \lim _{N \rightarrow \infty} \int_{-\pi}^{0} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s=0
\end{aligned}
$$

Proof of claim. We prove the first limit. Let $\epsilon>0$. Since, the integrand is piecewise continuous and uniformly bounded, we can find $\delta>0$ such that

$$
\left|\int_{0}^{\delta} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s\right|<\epsilon \quad \forall N \in \mathbb{Z}^{+}
$$

The integrand is piecewise smooth on the interval $[\delta, \pi]$. Lemma 1 implies that

$$
\lim _{N \rightarrow \infty} \int_{\delta}^{\pi} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s=0 .
$$

Hence,

$$
\lim _{N \rightarrow \infty} \int_{0}^{\pi} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s \leq \epsilon
$$

Since $\epsilon>0$ is arbitrary, then the limit is 0 . The second limit of the claim is proved in a similar way and is left as an exercise.

End of the proof of the theorem. By using $\int_{0}^{\pi} D_{N}(s) d s=\frac{1}{2}$, we get

$$
\begin{aligned}
\int_{0}^{\pi} f(x+s) D_{N}(s) d s-\frac{f\left(x^{+}\right)}{2} & =\int_{0}^{\pi}\left(f(x+s)-f\left(x^{+}\right)\right) D_{N}(s) d s \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{f(x+s)-f\left(x^{+}\right)}{s} \frac{s}{2 \sin (s / 2)} \sin \left(N+\frac{1}{2}\right) s d s \\
& =\frac{1}{\pi} \int_{0}^{\pi} h(s) k(s) \sin \left(N+\frac{1}{2}\right) s d s
\end{aligned}
$$

It follows from this and the claim that

$$
\lim _{N \rightarrow \infty} \int_{0}^{\pi} f(s+u) D_{N}(s) d s=\frac{f\left(x^{+}\right)}{2}
$$

A similar argument gives

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{0} f(s+u) D_{N}(s) d s=\frac{f\left(x^{-}\right)}{2}
$$

and completes the proof of the theorem.
Example 1. The 2π-periodic function f defined on $[-\pi, \pi]$ by $f(x)=|x|$ (the triangular wave function) is continuous on \mathbb{R}. It is therefore equal to its Fourier series for all $x \in \mathbb{R}$. In particular,

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}, \quad \forall x \in[-\pi, \pi]
$$

Fourier can be used to evaluate numerical series. For $x=0$, we obtain

$$
0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) 0}{(2 j+1)^{2}}
$$

Hence,

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

Example 2. The 2π-periodic function f defined on $[-\pi, \pi]$ by $f(x)=1$ if $0<x<$ π and $f(x)=-1$ for $-\pi<x<0$ is continuous everywhere except at the points $k \pi$, with $k \in \mathbb{Z}$. Thus $f(x)$ equal its Fourier series for $x \neq k \pi$. In particular

$$
1=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)}, \quad \forall x \in(0, \pi)
$$

For $x=k \pi$, we have $f_{a v}(k \pi)=0$ which is the value of the Fourier series when $x=k \pi$. We can use this series to evaluate the alternating series $\sum_{j=0}^{\infty}(-1)^{j} /(2 j+1)$. Indeed, for $x=\frac{\pi}{2}$, we get

$$
1=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) \pi / 2}{(2 j+1)}=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)}
$$

Hence,

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}
$$

Example 3. The 2π-periodic function f defined on $[-\pi, \pi]$ by $f(x)=x$ if $0 \leq$ $x<\pi$ and $f(x)=0$ for $-\pi<x \leq 0$ is continuous everywhere except at the points $(2 k+1) \pi$, with $k \in \mathbb{Z}$. The Fourier series of f is therefore equal to $f(x)$ everywhere except at the points $(2 k+1) \pi$. We have then,

$$
\frac{\pi}{4}-\frac{2}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}+\sum_{j=1}^{\infty} \frac{(-1)^{j-1} \sin j x}{j}= \begin{cases}x & \text { if } 0 \leq x<\pi \\ 0 & \text { if }-\pi<x \leq 0\end{cases}
$$

At the points $(2 k+1) \pi$, we have the average value $f_{a v}((2 k+1) \pi)=\pi / 2$. At such points the Fourier series is $\pi / 2$.

3. Differentiation of Fourier Series

When dealing with series of functions, one has to be careful on whow to use termwise differentiation. Consider the function of example 2 defined by $f(x)=1$ for $0<x<\pi$ and $f(x)=-1$ for $-\pi<x<0$. We found the Fourier series of f. We have in particular

$$
1=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)}, \quad \forall x \in(0, \pi)
$$

We are tempted to differentiate and write

$$
0=\frac{4}{\pi} \sum_{j=0}^{\infty} \cos (2 j+1) x
$$

But this cannot be the case since the series diverges. To be able to use term by term differentiation we need an extra condition on f. More precisely, we have

Theorem. Let f be 2π-periodic and continuous function on \mathbb{R} such that its derivative f^{\prime} is piecewise smooth. Let $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \cdots$, be the Fourier coefficients of f. Then the Fourier coefficients $a_{0}^{\prime}, a_{1}^{\prime}, b_{1}^{\prime}, a_{2}^{\prime}, b_{2}^{\prime}, \cdots$ of f^{\prime} are

$$
a_{0}^{\prime}=0, \quad a_{n}^{\prime}=n b_{n}, \quad b_{n}^{\prime}=-n a_{n}
$$

Remark. Under the hypotheses of the theorem, we have term by term differentiation. So if f is continuous, 2π-periodic and f^{\prime} is piecewise smooth, then

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=0}^{\infty} a_{n} \cos n x+b_{n} \sin n x \\
f^{\prime}(x) & \sim \sum_{n=0}^{\infty} n b_{n} \cos n x-n a_{n} \sin n x
\end{aligned}
$$

Claim. If g is continuous on an interval $[a, b]$ and g^{\prime} is piecewise continuous on $[a, b]$, then

$$
\int_{a}^{b} g^{\prime}(x) d x=g(b)-g(a) .
$$

Proof of the claim. Let $c_{0}=a<c_{1}<c_{2}<\cdots<c_{n}=b$ be the possible jump discontinuities of g^{\prime}. Then,

$$
\begin{aligned}
\int_{a}^{b} g^{\prime}(x) d x & =\sum_{j=1}^{n} \int_{c_{j-1}}^{c_{j}} g^{\prime}(x) d x \\
& =\sum_{j=1}^{n}\left[g\left(c_{j}^{-}\right)-g\left(c_{j-1}^{+}\right)\right] \\
& =\sum_{j=1}^{n}\left[g\left(c_{j}\right)-g\left(c_{j-1}\right)\right] \\
& =\left(g\left(c_{1}\right)-g\left(c_{0}\right)\right)+\left(g\left(c_{2}\right)-g\left(c_{1}\right)\right)+\cdots+\left(g\left(c_{n}\right)-g\left(c_{n-1}\right)\right) \\
& =g\left(c_{n}\right)-g\left(c_{0}\right)=g(b)-g(a)
\end{aligned}
$$

Proof of theorem. We use the claim to compute the Fourier coefficients of f^{\prime}

$$
a_{0}^{\prime}=\frac{1}{\pi} \int_{0}^{2 \pi} f^{\prime}(x) d x=\frac{f(2 \pi)-f(0)}{\pi}=0
$$

(since f is 2π-periodic). For $a_{n}(n \geq 1)$ we use integration by parts

$$
\begin{aligned}
a_{n}^{\prime} & =\frac{1}{\pi} \int_{0}^{2 \pi} f^{\prime}(x) \cos n x d x \\
& =\left(\frac{f(x) \cos n x}{\pi}\right)_{x=0}^{x=2 \pi}+\frac{1}{\pi} \int_{0}^{2 \pi} f(x) n \sin n x d x \\
& =\frac{n}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x=n b_{n}
\end{aligned}
$$

I leave it as an exercise for you to check that $b_{n}^{\prime}=-n a_{n}$.
Example. Consider the triangular wave function of Example 1 of the previous section. It is defined on $[-\pi, \pi]$ by $f(x)=|x|$. This function is continuous on \mathbb{R} and is 2π periodic. Furthermore its derivative $f^{\prime}(x)$ is piecewise smooth: it is 1 for $0<x<\pi$ and -1 for $-\pi<x<0 . f^{\prime}$ is the function of example 2 of the previous section. We have found

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}, \quad \forall x \in[-\pi, \pi]
$$

and by the Theorem we can differentiate term by term to get

$$
f^{\prime}(x) \sim \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)}
$$

4. Integration of Fourier Series

In general an antiderivative of a periodic function is not periodic. For example $f(x)=1$ is periodic (of any period) but its antiderivatives $F(x)=x+C$ are not periodic. The following lemma gives a necessary and sufficient condition for an antiderivative to be periodic.
Lemma. Let f be a T-periodic and piecewise continuous function on \mathbb{R}. The antiderivative F of f defined by

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is T-periodic if and only if

$$
\int_{0}^{T} f(t) d t=0
$$

Proof. Suppose that f satisfies $\int_{0}^{T} f(t) d t=0$. We need to show that $F(x+T)=$ $F(x)$. We have

$$
F(x+T)-F(x)=\int_{0}^{x+T} f(t) d t-\int_{0}^{x} f(t) d t=\int_{x}^{x+T} f(t) d t=\int_{0}^{T} f(t) d t=0 .
$$

Conversely, if the antiderivative is T-periodic, then

$$
0=F(T)-F(0)=\int_{0}^{T} f(t) d t
$$

We get the following result about term by term integration of Fourier series.
Theorem. Let f be a piecewise smooth and 2π-period function satisfying

$$
\int_{0}^{2 \pi} f(x) d x=0 \quad \Leftrightarrow \quad a_{0}=0
$$

Consider the antiderivative of f defined by $F(x)=\int_{0}^{x} f(t) d t$. Then the Fourier series is F is obtained from that of f by termwise integration. That is, if

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x,
$$

Then,

$$
F(x)=A_{0}+\sum_{n=1}^{\infty} \frac{-b_{n}}{n} \cos n x+\frac{a_{n}}{n} \sin n x,
$$

where $A_{0}=\sum_{n=1}^{\infty} \frac{b_{n}}{n}$.
Proof. The antiderivative F is continuous and it is also 2π-periodic (see Lemma). Since $F^{\prime}=f$ is piecewise smooth, then we can apply the previous Theorem about differentiation of Fourier series. Consider the Fourier series of F :

$$
F(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos n x+B_{n} \sin n x .
$$

Then

$$
F^{\prime}(x) \sim \sum_{n=1}^{\infty} n B_{n} \cos n x-n A_{n} \sin n x
$$

and so

$$
\left(n B_{n}=a_{n}, \quad-n A_{n}=b_{n}\right) \Leftrightarrow\left(A_{n}=\frac{-b_{n}}{n}, \quad B_{n}=\frac{a_{n}}{n}\right)
$$

The coefficient A_{0} can be found by using $F(0)=0$ and equating it to the value of the Fourier series at $x=0$.

Example. We start with the rectangular wave function of example 2 of the previous section: f is defined by $f(x)=1$ for $0<x<\pi$ and $f(x)=-1$ for $-\pi<x<0$ and f is 2π-periodic function. We have found

$$
f(x) \sim \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)} .
$$

Since $a_{0}=0$, we can integrate term by term to obtain the Fourier series of $F(x)=$ $\int_{0}^{x} f(t) d t$

$$
F(x)=A_{0}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}, \quad \forall x \in[-\pi, \pi]
$$

with $A_{0}=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{1}{(2 j+1)^{2}}$. In fact $F(x)=|x|$ for $|x| \leq \pi$ and $A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=$ $\frac{\pi}{2}$. We have recovered again

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}, \quad \forall x \in[-\pi, \pi]
$$

For the 2π-periodic function $F(x)=|x|$ on $[-\pi, \pi]$, termwise integration of its Fourier series is not a pure trigonometric series but will contain an extra term, a contribution from A_{0}, since $\int_{-\pi}^{\pi} F(x) d x \neq 0$. More precisely, for $0<x<\pi$, we have

$$
\begin{aligned}
& \int_{0}^{x} t d t=\int_{0}^{x} \frac{\pi}{2} d t-\frac{4}{\pi} \sum_{j=0}^{\infty} \int_{0}^{x} \frac{\cos (2 j+1) t}{(2 j+1)^{2}} d t \\
& \frac{x^{2}}{2}=\frac{\pi x}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)^{3}}
\end{aligned}
$$

Thus, for $0<x<\pi$, we have

$$
\frac{x^{2}}{2}-\frac{\pi x}{2}=-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)^{3}}
$$

The series $-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)^{3}}$ is the Fourier series of the 2π-periodic function $G(x)$ given on the interval $[-\pi, \pi]$ by

$$
G(x)=\int_{0}^{x} F(t) d t-A_{0} x=\int_{0}^{x}|t| d t-\frac{\pi x}{2}= \begin{cases}\left(x^{2}-\pi x\right) / 2 & \text { if } 0<x<\pi \\ \left(-x^{2}-\pi x\right) / 2 & \text { if }-\pi<x<0\end{cases}
$$

In fact this allows us to obtain an expansion of x^{2} over $[0, \pi]$ by using the series for x and for $\left(x^{2}-\pi x\right) / 2$. We have

$$
\begin{aligned}
x^{2} & =2 \frac{x^{2}-\pi x}{2}+\pi x \\
& =2\left(-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\sin (2 j+1) x}{(2 j+1)^{3}}\right)+\pi\left(\frac{\pi}{2}-\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}\right) \\
& =\frac{\pi^{2}}{2}-4 \sum_{j=0}^{\infty} \frac{\cos (2 j+1) x}{(2 j+1)^{2}}+\frac{2 \sin (2 j+1) x}{\pi(2 j+1)^{3}} .
\end{aligned}
$$

5. Uniform Convergence of Fourier series

A sequence of functions $g_{n}(x)$ defined on an interval I is said to converge uniformly to a function $g(x)$ on I if the following holds.

$$
\forall \epsilon>0, \exists N \in \mathbb{Z}^{+}, \quad\left|g_{n}(x)-g(x)\right|<\epsilon, \quad \forall x \in I, \quad \forall n \geq N
$$

This means that for any given $\epsilon>0$, we can find N that depends only on ϵ so that

Figure 6. Graph of $g_{n}(x)$ between those of $g(x) \pm \epsilon$
$g_{n}(x)$ is within ϵ from $g(x)$ for all $x \in I$ and for all $n>N$.
A sequence of functions $h_{n}(x)$ defined on an interval I is said to converge (pointwise) to a function $h(x)$ on I if the following holds.

$$
\forall x \in I, \quad \forall \epsilon>0, \exists N \in \mathbb{Z}^{+}, \quad\left|h_{n}(x)-h(x)\right|<\epsilon, \quad \forall n \geq N
$$

In the pointwise convergence N depends on ϵ and on x.
The uniform convergence is stronger than pointwise convergence. A particular consequence of the uniform convergence is the following. If each g_{n} is continuous in an interval I and if $g_{n} \longrightarrow g$ uniformly in I, then g is also continuous.

A series of function $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly to a function f on an interval I is the sequence of partial sums $s_{n}(x)=\sum_{j=1}^{n} f_{j}(x)$ converges uniformly to $f(x)$.

The following two propositions give sufficient conditions for the uniform convergence of Fourier series.
Proposition 1. Let

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

be the Fourier series of a piecewise smooth and 2π-periodic function f. If $\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\right.$ $\left.\left|b_{n}\right|\right)<\infty$, then the Fourier series converges uniformly.

Since the partial sums of the Fourier series are continuous, the proposition implies that the limit of the Fourier series is a continuous function. Thus the function f is continuous everywhere except possibly at removable discontinuities. This means $f\left(x^{+}\right)=f\left(x^{-}\right)$everywhere. Note also that if f has a jump discontinuity at x_{0} (i.e. $\left.f\left(x_{0}^{+}\right) \neq f\left(x_{0}^{-}\right)\right)$, then the Fourier series of f does not converge uniformly on any interval containing x_{0}.
Proposition 2. If a function f is continuous in \mathbb{R}, is piecewise smooth, and 2π-periodic, then its Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

converges uniformly to f on \mathbb{R}.

6. ExERCISES

In the following exercises, a 2π-periodic function f is given on the interval $[-\pi, \pi]$. (a.) Find the Fourier series of f : (b.) Find the intervals where $f(x)$ is equal to its Fourier series: (c.) Determine whether the Fourier series converges uniformly
Exercise 1. $f(x)= \begin{cases}-1 & \text { if } 0<x<\pi / 2 \\ 1 & \text { if }-\pi / 2<x<0 \\ 0 & \text { if } \pi / 2<|x|<\pi\end{cases}$
Exercise 2. $f(x)=|\sin x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$.
Exercise 3. $f(x)=|\cos x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n^{2}-1}$.
Exercise 4. $f(x)=\cos ^{2} x$ (thing about a trig. identity)
Exercise 5. $f(x)=\sin ^{2} x$
Exercise 6. $f(x)=x^{2}$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$
Exercise 7. $f(x)=x(\pi-|x|)$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{3}}$.
Exercise 8. Use the Fourier series for x^{2} that you found in exercise 6 to deduce the fourier series of $x^{3}-\pi^{2} x$ on $[-\pi, \pi]$ (use integration of Fourier series).
Exercise 9. Use the Fourier series you found in exercise 8. To deduce that

$$
x^{4}-2 \pi^{2} x^{2}=-\frac{7 \pi^{4}}{15}+48 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cos n x}{n^{4}} \quad \text { for }-\pi<x<\pi .
$$

Deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
Exercise 10. Suppose that $f(x)$ has Fourier series $\sum_{n=1}^{\infty} \mathrm{e}^{-n^{2}} \sin n x$. Find the Fourier series of $f^{\prime}(x)$ and the Fourier series of $f^{\prime \prime}(x)$ (justify your answer).

Appendix

In this appendix, we prove Propositions 1 and 2 about uniform convergence of Fourier series. Given a series $\sum_{n} f_{n}(x)$ of functions, a practical test for uniform convergence is the following.
Weierstrass M-Test. Given a series of functions $\sum_{n} f_{n}(x)$ on an interval I. If there is a sequence of real numbers $M_{n} \geq 0$ such that

$$
\left|f_{n}(x)\right| \leq M_{n}, \quad \forall x \in I, \quad \forall n \in \mathbb{Z}^{+}
$$

and if $\sum_{n=1}^{\infty} M_{n}<\infty$ then the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on I.
Schwartz Inequalities. Given series of real numbers $\sum_{n=1}^{\infty} \alpha_{n}$ and $\sum_{n=1}^{\infty} \beta_{n}$ so that $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$ and $\sum_{n=1}^{\infty} \beta_{n}^{2}<\infty$, then

$$
\left|\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}\right| \leq\left(\sum_{n=1}^{\infty} \alpha_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} \beta_{n}^{2}\right)^{1 / 2}
$$

Given piecewise continuous functions f and g on an interval $[a, b]$, then we have

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq\left(\int_{a}^{b} f(x)^{2} d x\right)^{1 / 2}\left(\int_{a}^{b} g(x)^{2} d x\right)^{1 / 2}
$$

Proof. We prove the first inequality and leave the second as an exercise. The proof is based on the following observation: if A, B, and C are real constants such that $A x^{2}+2 B x+C \geq 0, \forall x \in \mathbb{R}$, then necessarily $B^{2}-A C \leq 0$.

Now, let $N \in \mathbb{Z}^{+}$and define A_{N}, B_{N}, and C_{N} by

$$
A_{N}=\sum_{n=1}^{N} \alpha_{n}^{2}, \quad B_{N}=\sum_{n=1}^{N} \alpha_{n} \beta_{n}, \quad \text { and } \quad C_{N}=\sum_{n=1}^{N} \beta_{n}^{2} .
$$

For $x \in \mathbb{R}$, we have

$$
\sum_{n=1}^{N}\left(x \alpha_{n}+\beta_{n}\right)^{2}=x^{2} \sum_{n=1}^{N} \alpha_{n}^{2}+2 x \sum_{n=1}^{N} \alpha_{n} \beta_{n}+\sum_{n=1}^{N} \beta_{n}^{2} \geq 0
$$

Thus,

$$
A_{N} x^{2}+2 B_{N} x+C_{N} \geq 0, \quad \forall x \in \mathbb{R}
$$

and the observation implies that $B_{N}^{2} \leq A_{N} C_{N}$. Since by hypothesis, $\lim _{N \rightarrow \infty} A_{N}$ and $\lim _{N \rightarrow \infty} B_{N}$ are finite, we get (after letting $N \rightarrow \infty$)

$$
\left(\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}\right)^{2} \leq \sum_{n=1}^{\infty} \alpha_{n}^{2} \sum_{n=1}^{\infty} \beta_{n}^{2}
$$

The Schwartz inequality is obtained by taking the square root of the above inequality.

Bessel's inequality Let f be a 2π-periodic and piecewise continuous function with Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x .
$$

Then

$$
\frac{a_{0}^{2}}{4}+\sum_{n=1}^{\infty} \frac{a_{n}^{2}+b_{n}^{2}}{2} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} f(x)^{2} d x
$$

Proof. Let $S_{N} f$ be the N-th partial sum of the Fourier series of f. We have

$$
\left\|f(x)-S_{N} f(x)\right\|^{2}=<f-S_{N} f, f-S_{N} f>=\|f\|^{2}-2<f, S_{N} f>+\left\|S_{N} f\right\|^{2}
$$

Now

$$
f(x) S_{N} f(x)=\frac{a_{0}}{2} f(x)+\sum_{n=1}^{N} a_{n} \cos (n x) f(x)+b_{n} \sin (n x) f(x)
$$

To find $<f, S_{N} f>$, we integrate both sides from 0 to 2π and use the fact that

$$
\left.a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x, \begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x)\left\{\begin{array}{c}
\cos n x \\
\sin n x
\end{array} d x\right.
$$

to obtain

$$
<f, S_{N} f>=2 \pi\left(\frac{a_{0}^{2}}{4}+\sum_{n=1}^{N} \frac{a_{n}^{2}+b_{n}^{2}}{2}\right)
$$

To find $\left\|S_{N} f\right\|^{2}$, we use the orthogonality of the trigonometric system to obtain

$$
\begin{aligned}
\int_{0}^{2 \pi} S_{N} f(x)^{2} d x & =2 \pi \frac{a_{0}^{2}}{4}+\sum_{n=1}^{N} a_{n}^{2}\|\cos n x\|^{2}+b_{n}^{2}\|\sin n x\|^{2} \\
& =2 \pi\left(\frac{a_{0}^{2}}{4}+\sum_{n=1}^{N} \frac{a_{n}^{2}+b_{n}^{2}}{2}\right)
\end{aligned}
$$

These equalities imply that

$$
0 \leq\left\|f(x)-S_{N} f(x)\right\|^{2}=\|f\|^{2}-2 \pi\left(\frac{a_{0}^{2}}{4}+\sum_{n=1}^{N} \frac{a_{n}^{2}+b_{n}^{2}}{2}\right)
$$

and then

$$
\frac{a_{0}^{2}}{4}+\sum_{n=1}^{N} \frac{a_{n}^{2}+b_{n}^{2}}{2} \leq \frac{1}{2 \pi}\|f\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x)^{2} d x
$$

The Bessel's inequality follows by letting $N \rightarrow \infty$.
Proof of Proposition 1. Suppose that the Fourier coefficients of f satisfy $\sum_{n}\left|a_{n}\right|+\left|b_{n}\right|<\infty$. We use the Weierstrass M-test to show that the Fourier
series $\left(a_{0} / 2\right)+\sum_{n}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly on \mathbb{R}. For this, we just need to take $M_{n}=\left|a_{n}\right|+\left|b_{n}\right|$ and observe that

$$
\left|a_{n} \cos n x+b_{n} \sin n x\right| \leq\left|a_{n}\right|+\left|b_{n}\right|
$$

Proof of Proposition 2. Suppose that f is continuous piecewise smooth and 2π-periodic. Let

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x \text { and } \\
& \sum_{n=1}^{\infty} a_{n}^{\prime} \cos n x+b_{n}^{\prime} \sin n x
\end{aligned}
$$

be the Fourier series of f and of f^{\prime}. We need to show that the first series converge uniformly. For this it is enough to show that the series $\sum_{n}\left|a_{n}\right|+\left|b_{n}\right|<\infty$ (the Weierstrass M-test again would imply uniform convergence).

We apply Bessel's inequality to f^{\prime} :

$$
\sum_{n=1}^{\infty}\left({a_{n}^{\prime 2}}_{n}^{2}+{b_{n}^{\prime}}_{n}^{2}\right)<\frac{1}{\pi} \int_{0}^{2 \pi} f^{\prime}(x)^{2} d x
$$

We know that $a_{n}^{\prime}=n b_{n}$ and $b_{n}^{\prime}=-n a_{n}$. Hence,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) & =\sum_{n=1}^{\infty}\left(\frac{\left|a_{n}^{\prime}\right|}{n}+\frac{\left|b_{n}^{\prime}\right|}{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n}\left(\left|a_{n}^{\prime}\right|+\left|b_{n}^{\prime}\right|\right) \\
& \leq\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left(\left|a_{n}^{\prime}\right|+\left|b_{n}^{\prime}\right|\right)^{2}\right)^{1 / 2} \quad \text { (Schwartz inequality) } \\
& \leq\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2} 2\left(\sum_{n=1}^{\infty}\left(\left|a_{n}^{\prime}\right|^{2}+\left|b_{n}^{\prime}\right|^{2}\right)\right)^{1 / 2} \\
& \leq\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2} \frac{2}{\pi} \int_{0}^{2 \pi} f^{\prime}(x)^{2} d x
\end{aligned}
$$

This proves the uniform convergence of the Fourier series of f.

