
FOURIER SERIES PART III:

APPLICATIONS

We extend the construction of Fourier series to functions with arbitrary periods,
then we associate to functions defined on an interval [0, L] Fourier sine and Fourier
cosine series and then apply these results to solve BVPs.

1. Fourier series with arbitrary periods

Let f : R −→ R be a piecewise continuous function with period 2p (p > 0). We
would like to represent f by a trigonometric series. We can repeat what we did in
the previous note, when we had p = π, and reach the sought representation. There
is however a simple way of obtaining the same series by introducing the function

g(s) = f
(ps
π

) (
⇔ f(x) = g

(
πx

p

))
.

Note that since f ∈ C0
p(R), then g ∈ C0

p(R) and that since f is 2p-periodic, then

g(s+ 2π) = f

(
p(s+ 2π)

π

)
= f

(ps
π

+ 2p
)
= f

(ps
π

)
= g(s).

That is, g is 2π-periodic. We can therefore associate a Fourier series to g:

g(s) ∼ a0
2

+

∞∑
n=1

an cosns+ bn sinns .

In terms of the function f , we have the association

f(x) ∼ a0
2

+

∞∑
n=1

an cos
nπx

p
+ bn sin

nπx

p
.

The coefficients are given by

a0 =
1

π

∫ π

−π

g(s)ds =
1

π

∫ π

−π

f
(ps
π

)
ds =

1

p

∫ p

−p

f(x)dx

an =
1

π

∫ π

−π

g(s) cosnsds =
1

π

∫ π

−π

f
(ps
π

)
cos(ns)ds =

1

p

∫ p

−p

f(x) cos

(
nπx

p

)
dx

bn =
1

π

∫ π

−π

g(s) sinnsds =
1

π

∫ π

−π

f
(ps
π

)
sin(ns)ds =

1

p

∫ p

−p

f(x) sin

(
nπx

p

)
dx

The fundamental convergence theorem (Fourier theorem) states

Theorem. Let f be a 2p-periodic and piecewise smooth function on R. Then

fav(x) =
f(x+) + f(x−)

2
=

a0
2

+
∞∑

n=1

an cos
nπx

p
+ bn sin

nπx

p
,

where the coefficients are given by

a0 =
1

p

∫ p

−p

f(x)dx ,
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and for n ∈ Z+,

an =
1

p

∫ p

−p

f(x) cos

(
nπx

p

)
dx , bn =

1

p

∫ p

−p

f(x) sin

(
nπx

p

)
dx .

Again if f is continuous at x0, then f(x0) is equal to its Fourier series:

f(x0) =
a0
2

+

∞∑
n=1

an cos
nπx0

p
+ bn sin

nπx0

p
.

We also have uniform convergence with the additional condition that f is continuous
on R. More precisely,

Theorem. Let f be a 2p-periodic and piecewise smooth function on R. Suppose
that f is continuous in R, then

f(x) =
a0
2

+
∞∑

n=1

an cos
nπx

p
+ bn sin

nπx

p
∀x ∈ R

and the convergence is uniform.

Analogous results hold for termwise differentiation of Fourier series and termwise
integration.

Example. Consider the function f(x) that is 2p-periodic and is given on the
interval [−p, p] by

f(x) =


−2Hx

p
+H if 0 ≤ x < p/2 ;

2Hx

p
+H if − p/2 ≤ x < 0 ;

0 if p/2 ≤ |x| ≤ p

where H is a positive constant.

p −p 

H 

Figure 1. Graph of function of example

The function f is continuous on R and is piecewise smooth. It is also an even
function (hence its bn Fourier coefficients are all zero). The Fourier coefficients of
f are

a0 =
2

p

∫ p

0

f(x)dx =
2H

p

∫ p/2

0

(
−2x

p
+ 1

)
dx =

H

2
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and for n = 1, 2, 3, · · · we have

an =
2

p

∫ p

0

f(x) cos
nπx

p
dx =

2H

p

∫ p/2

0

(
−2x

p
+ 1

)
cos

nπx

p
dx

=
2H

p

[(
−2x

p
+ 1

)
p

nπ
sin

nπx

p

]p/2
0

+
4H

pnπ

∫ p/2

0

sin
nπx

p
dx

=
4H

π2n2

(
1− cos

nπ

2

)
Since the function f is continuous and piecewise smooth, we have

f(x) =
H

4
+

4H

π2

∞∑
n=1

1− cos(nπ/2)

n2
cos

nπx

p
∀x ∈ R

Furthermore, the convergence is uniform.
We can apply termwise differentiation to obtain the Fourier series of the deriv-

ative f ′ (where f ′(x) = −2H/p for 0 < x < p/2, f ′(x) = 2H/p for −p/2 < x < 0
and f ′(x) = 0 for p/2 < |x| < p). We have

f ′(x) ∼ −4H

πp

∞∑
n=1

1− cos(nπ/2)

n
sin

nπx

p

2. Parseval’s Identity

Parseval’s identity is a sort of a generalized pythagorean theorem in the space of
functions.

Theorem. (Parseval’s Identity) Let f be 2p-periodic and piecewise continuous
with Fourier series

a0
2

+
∞∑

n=1

an cos
nπx

p
+ bn sin

nπx

p
.

Then
a20
4

+
1

2

∞∑
n=1

(a2n + b2n) =
1

2p

∫ p

−p

f(x)2dx .

Proof. We will prove the identity when f is continuous and piecewise smooth.
In this case the Fourier series (equals f),is uniformly convergent, and termwise
integration is allowed. We have

f(x)2 =

(
a0
2

+

∞∑
n=1

an cos
nπx

p
+ bn sin

nπx

p

)
f(x)

=
a0
2
f(x) +

∞∑
n=1

anf(x) cos
nπx

p
+ bnf(x) sin

nπx

p
.

We integrate from −p to p and divide by 2p. The term by term integration gives

1

2p

∫ p

−p

f(x)2dx =
a0
2

1

2p

∫ p

−p

f(x)dx+

+
∞∑

n=1

an
1

2p

∫ p

−p

f(x) cos
nπx

p
dx+ bn

1

2p

∫ p

−p

f(x) sin
nπx

p
dx

=
a20
4

+
1

2

∞∑
n=1

(a2n + b2n)

.
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The Parseval’s identity is used to approximate the average error when replacing
a given function f by its N -th Fourier partial sum SNf . Recall that

SNf(x) =
a0
2

+
N∑

n=1

an cos
nπx

p
+ bn sin

nπx

p
.

The mean square error, when replacing f by SNf , is defined as the number EN

given by

E2
N =

1

p

∫ p

−p

(f(x)− SNf(x))
2
dx .

If we use Parseval’s identity to the function f − SNf , we find that

E2
N =

∞∑
n=N+1

(a2n + b2n)

Example. Consider the 2π-periodic function defined over [−π, π] by f(x) = 1
for 0 < x < π and f(x) = −1 for −π < x < 0. The fourier series of f is

4

π

∞∑
j=0

sin(2j + 1)x

(2j + 1)
. We would like to find N so that the approximation

f(x) ≈ 4

π

∑
2j+1≤N

sin(2j + 1)x

(2j + 1)

guarantees that the mean square error is no more than 0.01. That is EN < 10−2.
From the above discussion, we have

E2
N =

16

π2

∑
j>(N−1)/2

1

(2j + 1)2
.

We can estimate the last series by using the integral test (see figure). We have

y=1/(2x+1)2

M−1 M M+1 

Figure 2. Comparison of integral and sum

∞∑
j=M

1

(2j + 1)2
≤
∫ ∞

M−1

dx

(2x+ 1)2
=

1

2(2M − 1)
.
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Hence, it follows from the above calculations that

E2
N ≤ 16

π2N
.

Therefore, in order to have EN < 0.01, it is enough to take N so that N > 1600/π2.
That is N = 163.

Parseval’s identity can also be used to evaluate series.

Example. We have seen that

|x| = π

2
− 4

π

∞∑
j=0

cos(2j + 1)x

(2j + 1)2
∀x ∈ [−π, π] .

Parseval’s identity gives

π2

4
+

8

π2

∞∑
j=0

1

(2j + 1)4
=

1

2π

∫ π

−π

|x|2dx =
π2

3
.

From this we get

1 +
1

34
+

1

54
+

1

74
+

1

94
+ · · · = π4

96
.

3. Even and Odd Periodic Extensions

We would like to represent a function f given only on a an interval [0, L] by
a trigonometric series. For this we extend f to the interval [−L, L] as either an
even function or as an odd function then extend it to R as a periodic function with
period 2L. The Fourier series of this extension gives the sought representation of
f . The even extension gives the Fourier cosine series of f and the odd extension
gives the Fourier sine series of f .

More precisely, let f be a piecewise smooth function on the interval [0, L]. Let
feven and fodd be, respectively, the even and the odd odd extensions of f to the
interval [−L, L]. Now we extend feven to R as a 2L-periodic function Feven and

graph of   f graph of   f
even

graph of   f
odd

0 L 0 −L L 

0 L 
−L 

we extend fodd to R as a 2L-periodic function Fodd. Note

f(x) = Feven(x) = Fodd(x) ∀x ∈ [0, L] .

The Fourier series of Feven and Fodd are

Feven(x) ∼ a0
2

+
∞∑

n=1

an cos
nπx

L
and Fodd(x) ∼

∞∑
n=1

bn sin
nπx

L
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Even periodic extension F
even

Odd periodic extension F
odd

L −L 

L 

−L 

The Fourier coefficients are

an =
2

L

∫ L

0

Feven(x) cos
nπx

L
dx =

2

L

∫ L

0

f(x) cos
nπx

L
dx n = 0, 1, 2, · · ·

bn =
2

L

∫ L

0

Fodd(x) sin
nπx

L
dx =

2

L

∫ L

0

f(x) sin
nπx

L
dx n = 1, 2, 3, · · ·

This together with Fourier’s Theorem give the following representations.

Theorem Let f be a piecewise smooth function on the interval [0, L]. Then f has
the following Fourier cosine series representation: ∀x ∈ (0, L)

fav(x) =
a0
2

+

∞∑
n=1

an cos
nπx

L
, where an =

2

L

∫ L

0

f(x) cos
nπx

L
dx .

In particular at each point x where f is continuous we have

f(x) =
a0
2

+
∞∑

n=1

an cos
nπx

L
.

Theorem Let f be a piecewise smooth function on the interval [0, L]. Then f has
the following Fourier sine series representation: ∀x ∈ (0, L)

fav(x) =

∞∑
n=1

bn sin
nπx

L
, where bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx .

In particular at each point x where f is continuous we have

f(x) =
∞∑

n=1

bn sin
nπx

L
.

Example 1. Let f(x) = x on the interval [0, 1]. The 2-periodic even extension
of f is the triangular wave function and the 2-periodic odd extension of f is the
sawtooth function
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Even periodic extension of x

Odd periodic extension of x

1 −1 

1 −1 

If we use the even extension we get the Fourier cosine representation of x with
coefficients

a0 =
2

1

∫ 1

0

xdx = 1

and for n ≥ 1,

an =
2

1

∫ 1

0

x cosnπxdx =
2((−1)n − 1)

n2π2

Since a2j = 0 and a2j+1 = − 4

π2(2j + 1)2
, we get the Fourier cosine representation

x over [0, 1] as

x =
1

2
− 4

π2

∞∑
j=0

cos[(2j + 1)πx]

(2j + 1)2
.

If we use the odd extension we get the Fourier sine representation of x with
coefficients

bn =
2

1

∫ 1

0

x sinnπxdx =
2(−1)n+1

nπ
.

The Fourier sine representation of x over the interval [0, 1) is

x =
2

π

∞∑
n=1

(−1)n+1 sin(nπx)

n
.

Example 2. Find the Fourier cosine series of f(x) = sinx over the interval [0, π].
We have

a0 =
2

π

∫ π

0

sinxdx =
4

π
;

a1 =
2

π

∫ π

0

sinx cosxdx =
1

π

∫ π

0

sin(2x)dx = 0 .

To find an with n ≥ 2, we use the identity

2 sinx cos(nx) = sin(n+ 1)x− sin(n− 1)x .
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an =
2

n

∫ π

0

sinx cos(nx)dx =
1

π

∫ π

0

(sin(n+ 1)x− sin(n− 1)x) dx

=
1

π

[
cos(n− 1)x

n− 1
− cos(n+ 1)x

n+ 1

]π
0

=
2((−1)n−1 − 1)

π(n2 − 1)

We get the Fourier cosine of sinx on [0, π] as

sinx =
2

π
+

2

π

∞∑
n=2

(−1)n−1 − 1

n2 − 1
cos(nx) =

2

π
− 4

π

∞∑
j=1

cos(2jx)

(2j)2 − 1
.

4. Heat Conduction in a Rod

Now we are in a position to solve BVPs with more general nonhomogeneous
terms than the ones considered in Note 4. Consider the following BVP for the
temperature function u(x, t) in a rod of length L with initial temperature f(x) and
with ends kept at temperature 0.

ut = kuxx 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 < x < L

We can apply the method of separation of variables.
The homogeneous part of the BVP is

ut = kuxx, u(0, t) = 0, u(L, t) = 0

We have seen that solutions u(x, t) = X(x)T (t) (with separated variables) of the
homogeneous part leads to the ODE problems{

X ′′(x) + λX(x) = 0
X(0) = X(L) = 0

T ′(t) + kλT (t) = 0 .

The eigenvalues and eigenfunctions of the X-problem (Sturm-Liouville problem)
are

λn = ν2n, Xn(x) = sin(νnx), where νn =
nπ

L
, n ∈ Z+

For each n ∈ Z+, the corresponding T -problem has a solution

Tn(t) = e−kν2
nt

and a solution of the homogeneous part with separated variables is un(x, t) =
Tn(t)Xn(x). The principle of superposition implies that any linear combination of
these solutions is again a solution of the homogeneous part. Thus,

u(x, t) =
∞∑

n=1

CnTn(t)Xn(x) =
∞∑

n=1

Cne
−kν2

nt sin(νnx)

solves formally the homogeneous part of the BVP. At the points (x, t) where the se-
ries converges and term by term differentiation (once in t and twice in x) is allowed,
the function u(x, t) defined by the series is a true solution of the homogeneous part.
This will be addressed shortly.
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For now let us find the constants Cn so that the formal solution solves also the
nonhomogeneous condition u(x, 0) = f(x). That is, we would like the constants Cn

so that

u(x, 0) =
∞∑

n=1

Cne
−kν2

n0 sin(νnx) = f(x) .

Thus, after replacing νn by nπ/L, we get

f(x) =
∞∑

n=1

Cn sin
nπx

L
.

This is the Fourier sine representation of the function f . Therefore the coefficients
are given by

Cn =
2

L

∫ L

0

f(x) sin
nπx

L
dx , n ∈ Z+ .

Now we turn our attention to the series and verify that it indeed converges to
a twice differentiable function u on 0 < x < L and t > 0 if f is piecewise smooth.
For this we will use the Weierstrass M-test to prove uniform convergence. First, let
M > 0 be an upper bound of f (i.e. |f(x)| ≤ M for every x ∈ [0, L]). We have

|Cn| ≤
2

L

∫ L

0

|f(x)|| sin(νnx)|dx ≤ 2M .

It follows that for a given t0 > 0, we have∣∣∣Cne
−kν2

nt sin(νnx)
∣∣∣ ≤ 2Me−kν2

nt0 , ∀t ≥ t0, ∀x ∈ [0, L]

Since the numerical series
∑

n 2Me−kν2
nt0 converges (use ratio or root tests), then it

follows from the Weierstrass M-test that the series
∑

Cne
−kν2

nt sin(νnx) converges
uniformly on the set t ≥ t0, 0 ≤ x ≤ L. It follows at once that u is a continuous
function. We can repeat the argument for the series giving ut and the series giving
uxx. That is, the Weierstrass M-test shows that the series

ut =
∞∑

n=1

(−kν2n)Cne
−kν2

nt sin(νnx), and uxx =
∞∑

n=1

(−ν2n)Cne
−kν2

nt sin(νnx)

converge uniformly on t ≥ t0, x ∈ [0, L]. We also have ut = kuxx. Consequently
the function u(x, t) given by the above series satisfies the complete BVP.

Example. Consider the BVP

ut = uxx 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = 100 0 < x < π

We have

Cn =
2

π

∫ π

0

100 sin(nx)dx =
200(1− (−1)n)

πn

The solution of the BVP is therefore

u(x, t) =
200

π

∞∑
n=1

1− (−1)n

n
e−n2t sin(nx)
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or equivalently

u(x, t) =
400

π

∞∑
j=0

exp
[
−((2j + 1)2t

] sin(2j + 1)x

2j + 1
.

5. Wave Propagation in a String

Consider the BVP for the vibrations of a string with fixed ends.

utt = c2uxx 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 < x < L
ut(x, 0) = g(x) 0 < x < L

Thus u(x, t) represents the vertical displacement at time t of the point x on the
string. The initial position and initial velocities of the string are given by the
functions f(x) and g(x).

The homogeneous part (HP) of the BVP is

utt = c2uxx, u(0, t) = 0, u(L, t) = 0

The solutions u(x, t) = X(x)T (t) (with separated variables) of the homogeneous
part leads to the ODE problems{

X ′′(x) + λX(x) = 0
X(0) = X(L) = 0

T ′′(t) + c2λT (t) = 0 .

The eigenvalues and eigenfunctions of the X-problem (SL problem) are

λn = ν2n, Xn(x) = sin(νnx), where νn =
nπ

L
, n ∈ Z+

The corresponding T -problem has two independent solutions

T 1
n(t) = cos(cνnt) and T 2

n(t) = sin(cνnt) .

For each n ∈ Z+, we obtain solutions of (HP) with separated variables

u1
n(x, t) = T 1

n(t)Xn(x) = cos(cνnt) sin(νnx) and
u2
n(x, t) = T 2

n(t)Xn(x) = sin(cνnt) sin(νnx) .
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The principle of superposition implies that any linear combination of these solutions
is again a solution of (HP). Thus,

u(x, t) =
∞∑

n=1

AnT
1
n(t)Xn(x) +BnT

2
nXn(x)

=

∞∑
n=1

[An cos(cνnt) +Bn sin(cνnt)] sin(νnx)

is a formal solution of (HP).
Now we use the nonhomogeneous conditions to find the coefficients An and Bn.

First, we compute the (formal) derivative of ut

ut(x, t) =
∞∑

n=1

[cνnBn cos(cνnt)− cνnAn sin(cνnt)] sin(νnx) .

The conditions u(x, 0) = f(x) and ut(x, 0) = g(x) lead to

f(x) =
∞∑

n=1

An sin(νnx) =
∞∑

n=1

An sin
nπx

L
and

g(x) =

∞∑
n=1

cνnBn sin(νnx) =

∞∑
n=1

cnπ

L
Bn sin

nπx

L
.

These are the Fourier series sine representations of f and g on the interval [0, L].
Therefore

An =
2

L

∫ L

0

f(x) sin
nπx

L
dx and c

nπ

L
Bn =

2

L

∫ L

0

g(x) sin
nπx

L
dx

By using criteria for uniform convergence of Fourier series (Propositions 1 and
2 of Note 7), it can be shown that if f is continuous and piecewise smooth and if g
is piecewise smooth, then the series defining u is uniformly convergent and u(x, t)
is a continuous function for t ≥ 0 and 0 ≤ x ≤ L. Moreover, we can show that if f ,
f ′, f ′′, g, and g′ are continuous functions on [0, L], the function u(x, t) defined by
the infinite series is twice differentiable in (x, t) and term by term differentiations
in the series are valid. This give u(x, t) as the (unique) solution of BVP.

Remark 1. Many concrete problems involve functions f that are only continuous
and piecewise smooth. The series solution u is then only continuous. It is a ’con-
tinuous’ solution of the BVP. The problem is understood in a more general sense:
in the sense of distributions ( a notion of generalized functions that is beyond the
scope of this course).

Remark 2. In concrete application problems, to overcome the lack of differentia-
bility of the series solution u, we can to within any degree of accuracy ϵ, replace
the functions f and g by their truncated Fourier series SNf and SNg so that

||f − SNf || < ϵ, ||g − SNg|| < ϵ on [0, L]

The functions SNf and SNg are infinitely differentiable and the corresponding
solution uN (the truncated series of u) is infinitely differentiable.



12 FOURIER SERIES PART III: APPLICATIONS

Remark 3. By using the principle of superposition, this BVP could have been
split into two BVPs: BVP1 (plucked string)

vtt = c2vxx 0 < x < L, t > 0
v(0, t) = 0, v(L, t) = 0 t > 0
v(x, 0) = f(x) 0 < x < L
vt(x, 0) = 0 0 < x < L

and BVP2 (struck string)

wtt = c2wxx 0 < x < L, t > 0
w(0, t) = 0, w(L, t) = 0 t > 0
w(x, 0) = 0 0 < x < L
wt(x, 0) = g(x) 0 < x < L

The solutions to BVP1 and BVP2 are, respectively,

v =
∞∑

n=1

An cos(cνnt) sin(νnx)

w =
∞∑

n=1

Bn sin(cνnt) sin(νnx)

The solution to the original BVP is u = v + w.

Example 1. (Plucked string) Consider the BVP
utt = 4vxx 0 < x < 10, t > 0
u(0, t) = 0, u(L, 10) = 0 t > 0
u(x, 0) = f(x) 0 < x < 10
ut(x, 0) = 0 0 < x < 10

where

Initial position of the string

5 

1 

10 0 

f(x) =

{
x/5 if 0 ≤ x ≤ 5
(10− x)/5 if5 ≤ x ≤ 10

For such an initial position we have (Bn = 0) and

An =
2

10

∫ 10

0

f(x) sin
nπx

10
dx

=
1

25

∫ 5

0

x sin
nπx

10
dx+

1

25

∫ 10

5

(10− x) sin
nπx

10
dx

=
8

π2n2
sin

nπ

2



FOURIER SERIES PART III: APPLICATIONS 13

Hence, A2j = 0 and A2j+1 =
8(−1)j

π2(2j + 1)2
. The series solution is

u(x, t) =
8

π2

∞∑
j=0

cos((2j + 1)t/5)
(−1)j sin((2j + 1)πx/10)

(2j + 1)2

=
8

π2

(
cos(t/5) sin(x/10)− cos(3t/5) sin(3x/10)

9
+

+
cos(5t/5) sin(5x/10)

25
− cos(7t/5) sin(7x/10)

49
+ · · ·

)
The individual components un(x, t) = cos(nπt/5) sin(nπx/10) are called the har-
monics or modes of vibrations. The function un(x, t) is just a sine function in x
being scaled by a cosine function in t with frequency n/10.

First mode Second mode Third mode

 

Figure 3. The first three modes of vibrations of the plucked string
at various times.

Example 2. (Struck string) Consider the BVP
utt = 4vxx 0 < x < 10, t > 0
u(0, t) = 0, u(L, 10) = 0 t > 0
u(x, 0) = 0 0 < x < 10
ut(x, 0) = g(x) 0 < x < 10

where
g(x) = −1 if 4 < x < 6, and g(x) = 0 elsewhere .

This time An = 0, and

nπ

5
Bn =

2

10

∫ 10

0

g(x) sin
nπx

10
dx

=
1

πn

(
cos

2nπ

5
− cos

3nπ

5

)
Thus

Bn =
5

π2n2

(
cos

2nπ

5
− cos

3nπ

5

)
=

10

π2n2
sin

nπ

2
sin

nπ

10

The series solution is

u(x, t) =
10

π2

∞∑
n=1

1

n2
sin

nπ

2
sin

nπ

10
sin

nπt

5
sin

nπx

10

=
10

π2

(
sin

π

10
sin

πt

5
sin

πx

10
− 1

9
sin

3π

10
sin

3πt

5
sin

3πx

10
+

+
1

25
sin

5π

10
sin

5πt

5
sin

5πx

10
− 1

49
sin

7π

10
sin

7πt

5
sin

7πx

10
+ · · ·

)
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6. Problems Dealing with the Laplace Equation

Recall that the Dirichlet problem in a rectangle is to find a harmonic function u
inside the rectangle whose values on the boundary are given. That is

∆u(x, y) = 0 0 < x < L, 0 < y < H
u(x, 0) = f1(x), u(x,H) = f2(x) 0 < x < L
u(0, y) = g1(y), u(L, y) = g2(2) 0 < y < H

To solve this problem, we use the principle of superposition to decompose it into
four simpler subproblems as in the figure.

∆ u=0

 u=f
1
(x)

 u=f
2
(x)

 u=g
1
(y)

 u=g
2
(y)

∆ u
1
=0

 u
1
=f

1
(x)

 u
1
=0

 u
1
=0

 u
1
=0

∆ u
2
=0

 u
2
=f

2
(x)

 u
2
=0

 u
2
=0

 u
2
=0

∆ u
3
=0

 u
3
=0

 u
3
=0

 u
3
=g

1
(y)

 u
3
=0

∆ u
4
=0

 u
4
=0

 u
4
=0

 u
4
=0

 u
4
=g

2
(y)

= 

+ + 

+ 

We can find the solution u(x, y) as

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y) .

Each of the subproblems can be solved by the method of separation of variables.
Now we indicate how to find u1(x, y). The solutions with separated variables

u1(x, y) = X(x)Y (y) of the homogeneous part leads to the ODE problems{
X ′′(x) + λX(x) = 0
X(0) = X(L) = 0

and

{
Y ′′(y)− λY (y) = 0
Y (H) = 0

where λ is the separation constant. The X-problem is an SL-problem whose eigen-
values and eigenfunctions are

λn = ν2n, Xn(x) = sin(νnx), where νn =
nπ

L
, n ∈ Z+ .

For each λn, the corresponding ODE for the Y -problem has general solution Yn =
A cosh(νny)+B sinh(νny). The boundary condition Y (H) = 0, implies that (up to
a multiplicative constant), the solution of the Y -problem is

Yn(y) = sinh [νn(H − y)] .
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Hence, the solutions with separated variables of the homogeneous part of the u1-
problem are generated by

u1,n(x, y) = sinh [νn(H − y)] sin(νnx) n ∈ Z+ .

A series solution of the u1-problem is therefore

u1(x, y) =
∞∑

n=1

Cn sinh [νn(H − y)] sin(νnx) .

Such a solution solves the nonhomogeneous condition u(x, 0) = f1(x) if and only if

f1(x) =

∞∑
n=1

Cn sinh(νnH) sin(νnx) =

∞∑
n=1

Cn sinh
nπH

L
sin

nπx

L
.

Thus, Cn sinh(νnH) is the n-th Fourier sine coefficient of f1 over [0, L]:

Cn sinh
nπH

L
=

2

L

∫ L

0

f1(x) sin
nπx

L
dx .

The functions u2, u3, and u4 can be found in a similar way.

Example 1. Consider the following BVP with mixed boundary conditions.

∆u(x, y) = 0 0 < x < π, 0 < y < 2π
u(x, 0) = x, u(x, 2π) = 0 0 < x < π
ux(0, y) = 0, ux(π, y) = 1 0 < y < 2π

We decompose the problem as shown in the figure (see next page).

∆ u=0

u
x
=0

u
x
=1

∆ v=0

v
x
=0

v
x
=0

∆ w=0

w
x
=0

w
x
=1

u=x 

u=0 

= 

v=x 

v=0 

w=0 

w=0 

+ 

The method of separation of variables for the v-problem leads to the ODE prob-
lems {

X ′′(x) + λX(x) = 0
X ′(0) = X ′(π) = 0

and

{
Y ′′(y)− λY (y) = 0
Y (2π) = 0

where λ is the separation constant. The X-problem is an SL-problem whose eigen-
values and eigenfunctions are

λ0 = 0, X0(x) = 1

and for n ∈ Z+

λn = n2, Xn(x) = cos(nx) .

For λ0 = 0, the general solution of the ODE for the Y -problem is Y (y) = A+ By
and in order to get Y (2π) = 0, we need A = −2Bπ. Thus Y0(y) = (2π−y) generates
the solutions of the Y -problem For λn = n2, the solutions of the Y -problem are
generated by Yn(y) = sinh [n(2π − y)].
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The solutions with separated variables of the homogeneous part of the v-problem
are therefore

v0(x, y) = 2π − y and vn(x, y) = sinh [n(2π − y)] cos(nx) for n ∈ Z+

The series solution is

v(x, y) = C0(2π − y) +

∞∑
n=1

Cn sinh [n(2π − y)] cos(nx) .

In order for such a series to solve the nonhomogeneous condition v(x, 0) = x, we
need to have

x = 2πC0 +

∞∑
n=1

Cn sinh(2nπ) cos(nx) .

This is the Fourier cosine expansion of x over [0, π]. Hence,

2πC0 =
2

π

∫ π

0

xdx = π ⇒ C0 =
1

2

and for n ≥ 1

sinh(2nπ)Cn =
2

π

∫ π

0

x cos(nx)dx =
2 ((−1)n − 1)

πn2
.

This gives

C2j = 0 and C2j+1 =
−4

π(2j + 1)2 sinh [2π(2j + 1)]
.

The solution of the v-problem is

v(x, y) =
2π − y

4
− 4

π

∞∑
j=0

sinh [(2j + 1)(2π − y)]

sinh [2(2j + 1)π]

cos(2j + 1)x

(2j + 1)2
.

Now we solve the w-problem. The separation of variables for the homogeneous
part leads to the ODE problems.{

X ′′(x)− λX(x) = 0
X ′(0) = 0

and

{
Y ′′(y) + λY (y) = 0
Y (0) = Y (2π) = 0

This time it is the Y -problem that is a Sturm-Liouville problem with eigenvalues
and eigenfunctions

λn =
n2

22
, Yn(y) = sin

ny

2
, n ∈ Z+ .

For each n, a generator of the solutions of the X-problem is

Xn(x) = cosh
nx

2
.

The series solution of the w-problem is therefore

w(x, y) =
∞∑

n=1

Cn cosh
nx

2
sin

ny

2
.

To find the coefficients Cn so that wx(π, y) ≡ 1, we need

wx(x, y) =
∞∑

n=1

n

2
Cn sinh

nx

2
sin

ny

2
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This gives

1 =

∞∑
n=1

n

2
Cn sinh

nπ

2
sin

ny

2

(the Fourier sine expansion of 1 over the interval [0, 2π]):

n

2
Cn sinh

nπ

2
=

2

2π

∫ 2π

0

sin
ny

2
dy =

2 (1− (−1)n)

nπ
.

Equivalently,

C2j = 0, C2j+1 =
8

π(2j + 1)2 sinh [(2j + 1)π/2]
.

The solution of the w-problem is therefore

w(x, y) =
8

π

∞∑
j=0

cosh [(2j + 1)x/2]

sinh [(2j + 1)π/2]

sin [(2j + 1)y/2]

(2j + 1)2

The solution u of the original problem is u(x, y) = v(x, y) + w(x, y).

Example 2. Consider the Dirichlet problem in a disk (written in polar coordinates)

∆u(r, θ) = 0 r < 1, θ ∈ [0, 2π]
u(1, θ) = f(θ) θ ∈ [0, 2π]

We take the function f to be given by

∆ u=0

u(1,θ )=f(θ)

f(θ) =

{
sin θ if 0 ≤ θ ≤ π
0 if π ≤ θ ≤ 2π

Recall that the Laplace operator in polar coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

A solution with separated variables u(r, θ) = R(r)Θ(θ) leads to the ODEs

Θ′′(θ) + λΘ(θ) = 0 and r2R′′(r) + rR′(r)− λR(r) = 0

where λ is the separation constant. Note that since u(r, θ+ 2π) = u(r, θ), then the
function Θ and also Θ′ need to be 2π-periodic. Thus to the ODE for Θ we need
to add Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π). Hence, the Θ-problem is a periodic
SL-problem whose eigenvalues and eigenfunctions are

λ0 = 0, Θ0(θ) = 1 ,
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and for n ∈ Z+,

λn = n2, Θ1
n(θ) = cos(nθ), Θ2

n(θ) = sin(nθ) .

The ODE for the R-function is a Cauchy-Euler equation with characteristic equa-
tion m2 − λ = 0. For λ = λ0 = 0, the general solution of the R-equation are
generated by

R1
0(r) = 1 and R2

0(r) = ln r .

For λ = λn (we have m = ±n), the solutions of the R-equation are generated by

R1
n(r) = rn and R2

n(r) = r−n .

The solutions with separated variables of the Laplace equation ∆u = 0 in the disk
are therefore

1, ln r, rn cos(nθ), rn sin(nθ), r−n cos(nθ), r−n sin(nθ) .

Since we looking for solutions that are bounded in the disk and since ln r and
r−n cos(nθ) and r−n sin(nθ) are not bounded, then we will discard then when form-
ing u

The series solution has the form

u(r, θ) = A0 +
∞∑

n=1

(Anr
n cos(nθ) +Bnr

n sin(nθ))

The initial condition u(1, θ) = f(θ) leads to

f(θ) = A0 +

∞∑
n=1

An cos(nθ) +Bn sin(nθ) .

This is the Fourier series of f . I leave it as an exercise for you to verify that the
Fourier series of f is

f(θ) =
1

π
+

1

2
sin θ − 2

π

∞∑
j=1

cos(2jθ)

4j2 − 1
.

The solution of the Dirichlet problem is

u(r, θ) =
1

π
+

r

2
sin θ − 2

π

∞∑
j=1

r2j cos(2jθ)

4j2 − 1

7. Exercises

Exercise 1. (a) Find the Fourier series of the function with period 4 that is defined

over [−2, 2] by f(x) =
4− x2

2
.

(b) Use Parseval’s equality to evaluate the series
∞∑

n=1

1

n4
.

(c) Use the integral test to estimate the mean square error EN when replacing
f by its truncated Fourier series SNf .

(d) Find N so that EN ≤ 0.01 and then find N so that EN ≤ 0.001

Exercise 2. (a) Find the Fourier series of the function with period 4 that is defined
over [−2, 2] by

f(x) =

{
1− x if 0 ≤ x ≤ 2
1 + x if − 2 ≤ x ≤ 0
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(b) Use Parseval’s equality to evaluate the series
∞∑
j=0

1

(2j + 1)4
.

(c) Use the integral test to estimate the mean square error EN when replacing
f by its truncated Fourier series SNf .

(d) Find N so that EN ≤ 0.01 and then find N so that EN ≤ 0.001

Exercise 3. Find the Fourier sine series of f(x) = cosx over [0, π] (What is the
Fourier cosine series of cosx on [0, π]?)

Exercise 4. Find the Fourier cosine series of f(x) = sinx over [0, π] (What is the
Fourier sine series of sinx on [0, π]?)

Exercise 5. Find the Fourier cosine series of f(x) = x2 over [0, 1].

Exercise 6. Find the Fourier sine series of f(x) = x2 over [0, 1].

Exercise 7. Find the Fourier cosine series of f(x) = x sinx over [0, π].

Exercise 8. Find the Fourier sine series of f(x) = x sinx over [0, π].

Exercise 9. Solve the BVP ut = uxx, 0 < x < 2, t > 0
u(0, t) = u(2, t) = 0, t > 0
u(x, 0) = f(x), 0 < x < 2

where

f(x) =

{
1 if 0 < x < 1
0 if 1 < x < 2

Exercise 10. Solve the BVP ut = uxx, 0 < x < 2, t > 0
u(0, t) = u(2, t) = 0, t > 0
u(x, 0) = cos(πx), 0 < x < 2

Exercise 11. Solve the BVP ut + u = (0.1)uxx, 0 < x < π, t > 0
ux(0, t) = ux(π, t) = 0, t > 0
u(x, 0) = sinx, 0 < x < 2

Exercise 12. Consider the BVP modeling heat propagation in a rod where the
end points are kept at constant temperatures T1 and T2: ut = kuxx, 0 < x < L, t > 0

u(0, t) = T1, u(L, t) = T2, t > 0
u(x, 0) = f(x), 0 < x < L

Since T1 and T2 are not necessarily zero, we cannot apply directly the method of
eigenfunctions expansion. To solve such a problem, we can proceed as follows.

1. Find a function α(x) (independent on time t) so that

α′′(x) = 0, α(0) = T1 α(L) = T2 .
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2. Let v(x, t) = u(x, t)− α(x). Verify that if u(x, t) solves the given BVP, then
v(x, t) solves the following problem vt = kvxx, 0 < x < L, t > 0

v(0, t) = 0, v(L, t) = 0, t > 0
v(x, 0) = f(x)− α(x), 0 < x < L

The v-problem can be solved by the method of separation of variables. The solution
u of the original problem is therefore u(x, t) = v(x, t) + α(x).

Exercise 13. Apply the method of described in Exercise 12 to solve the problem ut = uxx, 0 < x < 2, t > 0
u(0, t) = T1, u(2, t) = T2, t > 0
u(x, 0) = f(x), 0 < x < 2

in the following cases
1. T1 = 100, T2 = 0, f(x) = 0.
2. T1 = 100, T2 = 100, f(x) = 0.
3. T1 = 0, T2 = 100, f(x) = 50x.

In problems 14 to 16, solve the wave propagation problem utt = c2uxx, 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L

Exercise 14. c = 1, L = 2, f(x) = 0, g(x) =

{
x if 0 < x < 1
2− x if 1 < x < 2

Exercise 15. c = 1/π, L = 2, f(x) = sinx, g(x) =

{
x if 0 < x < 1
2− x if 1 < x < 2

Exercise 16. c = 2, L = π, f(x) = x sinx, g(x) = sin(2x).

In exercises 17 to 19, solve the wave propagation problem with damping utt + 2aut = c2uxx, 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L

Exercise 17. c = 1, a = .5, L = π, f(x) = 0, g(x) = x

Exercise 18. c = 4, a = π, L = 1, f(x) = x(1− x), g(x) = 0.

Exercise 19. c = 1, a = π/6, L = 2, f(x) = x sin(πx), g(x) = 1.

In exercises 20 to 22, solve the Laplace equation ∆u(x, y) = 0 inside the rectangle
0 < x < L, 0 < y < H subject the the given boundary conditions.
Exercise 20. L = H = π, u(x, 0) = x(π − x), u(x, π) = 0, u(0, y) = u(π, y) = 0.

Exercise 21. L = π, H = 2π, u(x, 0) = 0, u(x, 2π) = x, ux(0, y) = sin y,
ux(π, y) = 0.

Exercise 22. L = H = 1, u(x, 0) = u(x, 1) = 0, u(0, y) = 1, u(1, y) = sin y.

Exercise 23. Solve the Laplace equation ∆u(r, θ) = 0 inside the semicircle of
radius 2 (0 < r < 2, 0 < θ < π ) subject to the boundary conditions

u(r, 0) = u(r, π) = 0 (0 < r < 2) and u(2, θ) = θ(π − θ) (0 < θ < π)
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Exercise 24. Solve the Laplace equation ∆u(r, θ) = 0 inside the semicircle of
radius 2 (0 < r < 2, 0 < θ < π ) subject to the boundary conditions

uθ(r, 0) = uθ(r, π) = 0 (0 < r < 2) and u(2, θ) = θ(π − θ) (0 < θ < π)

Exercise 25. Solve the Laplace equation ∆u(r, θ) = 0 inside the quarter of a circle
of radius 2 (0 < r < 2, 0 < θ < π/2 ) subject to the boundary conditions

u(r, 0) = u(r, π/2) = 0 (0 < r < 2) and u(2, θ) = θ (0 < θ < π/2)


