
STURM-LIOUVILLE PROBLEMS:

GENERALIZED FOURIER SERIES

1. Regular Sturm-Liouville Problem

The method of separation of variables to solve boundary value problems leads
to ordinary differential equations on intervals with conditions at the endpoints of
the intervals. For example heat propagation in a rod of length L whose end points
are kept at temperature 0 leads to the ODE problem

X ′′(x) + λX(x) = 0, X(0) = 0, X(L) = 0.

If the endpoints are insulated, the ODE problem becomes

X ′′(x) + λX(x) = 0, X ′(0) = 0, X ′(L) = 0.

These are examples of Sturm-Liouville problems.
A regular Sturm-Liouville problem (SL problem for short) on an interval [a, b]

is a second order ODE problem, with endpoints conditions, of the form

(1)
(p(x)y′)

′
+ [λr(x)− q(x)] y = 0

α1y(a) + α2y
′(a) = 0

β1y(b) + β2y
′(b) = 0

where

• p, q and r are continuous functions on [a, b] such that

p(x) > 0 and r(x) > 0 ∀x ∈ [a, b]

• α1, α2, β1, and β2 are constants such that α1, α2 are not both zero, and
β1, β2 are not both zero.

• λ ∈ R is a parameter

Remark 1. The second order ODE of the SL-problem (1) is in self-adjoint form
(suitable for certain manipulations). Most second order linear ODEs can be trans-
formed into a self-adjoint form. Consider the second order ODE

A(x)y′′ +B(x)y′ + C(x)y = 0 ⇔ y′′ +
B

A
y′ +

C

A
y = 0

with A(x) > 0 on an interval I. Let p(x) be defined by

p(x) = exp

(∫
B(x)

A(x)
dx

)
.

Then p′ = (B/A)p and py′′ + p(B/A)y′ = (py′)′. Hence, if we multiply the last
ODE by p we obtain

py′′ + p(B/A)y′ + p(C/A)y = 0 ⇔ (py′)′ + p(C/A)y = 0

This last ODE is in self-adjoint form.
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Note that y ≡ 0 is a solution of the SL-Problem (1). It is the trivial solution.
For most values of the parameter λ, problem (1) has only the trivial solution. An
eigenvalue of the the SL-problem (1) is a value of λ for which a nontrivial solution
exist. The nontrivial solution is called an eigenfunction. Note that if y(x) solves (1),
then so does any multiple cy(x), where c is a constant. Thus if y1 is an eigenfunction
of (1) with eigenvalue λ1, then any function cy1(x) is also an eigenfunction with
eigenvalue λ1. In fact the set of all eigenfunctions, corresponding to an eigenvalue
λ, together with the zero function forms a vector space: the eigenspace of the
eigenvalue.

Example 1. For the SL-problem

y′′(x) + λy(x) = 0, y(0) = y(L) = 0

we have p(x) = 1, r(x) = 1, q(x) = 0, α1 = β1 = 1, and α2 = β2 = 0. This problem,
that we have encountered several times already, has infinitely many eigenvalues
λn = (nπ/L)2, and for each n ∈ Z+, the eigenspace is generated by the function
yn(x) = sin(nπx/L).

Example 2. The eigenvalues and eigenfunction of the SL-problem

y′′(x) + λy(x) = 0, y′(0) = y′(L) = 0

(here we have α1 = β1 = 0 and α2 = β2 = 1) are: λ0 = 0 with y0(x) = 1, and for
n ∈ Z+, λn = (nπ/L)2 with yn(x) = cos(nπx/L).

Example 3. Consider the SL-problem

y′′(x) + λy(x) = 0, y(0) = 0, y′(L) = 0 ,

(this time α1 = 1, α2 = 0, β1 = 0, and β2 = 1). To find the eigenvalues, we consider
three cases depending on the values of λ.

If λ < 0, set λ = −ν2 with ν > 0. In this case the general solution of the
ODE is y(x) = C1 sinh(νx) + C2 cosh(νx). In order for y(0) = 0, we need to have
C1 = 0, thus y = C1 sinh(νx) and y′ = νC1 cosh(νx). To get y′(L) = 0, we need
νC1 cosh(νL) = 0. Since coshx > 0 (∀x ∈ R)and since ν > 0, then necessarily
C1 = 0 and then y ≡ 0. Thus λ < 0 cannot be an eigenvalue.

If λ = 0, then y(x) = A + Bx is the general solution of the ODE and the
boundary conditions give A = B = 0, and consequently λ = 0 is not an eigenvalue.

If λ > 0, we set λ = ν2 with ν > 0. The general solution of the ODE
is y(x) = C1 sin(νx) + C2 cos(νx). The condition y(0) = 0 implies C2 = 0.
Then y = C1 sin(νx) gives y′ = νC1 cos(νx) and the condition y′(L) = 0 gives
νC1 cos(νL) = 0. In order to obtain a nontrivial solution, we need C1 ̸= 0. Conse-
quently, cos(νL) = 0. Hence

νL =
π

2
+ jπ =

(2j + 1)π

2
, j = 0, 1, 2, · · ·

The eigenvalues and eigenfunctions of the SL-problem are therefore

λj =

(
(2j + 1)π

2

)2

, yj(x) = sin
(2j + 1)πx

2
, j = 0, 1, 2, · · ·

This is the typical situation for the general SL-problem (1). The set of eigenvalues
forms an increasing sequence and for each eigenvalue, the corresponding eigenspace
is generated by one function. More precisely, we have the following Theorem,
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Theorem 1. The set of eigenvalues of the SL-problem (1) forms an increasing
sequence

λ1 < λ2 < λ3 < · · · , with lim
j→∞

λj = ∞

and for each j ∈ Z+, the eigenspace of λj is one-dimensional: it is generated by
one eigenfunction yj(x)

The proofs of the Theorems of this Note will not given here but can be found
in either Ordinary Differential Equations by G. Birkhoff and G. Rotta; Methods of
Mathematical Physics by R. Courant and D. Hilbert; A First Course in PDE by
H.F. Weinberger.

Example 4. Let us find the eigenvalues and eigenfunctions of the SL-problem

(x2y′)′ + λy = 0 1 < x < 2
y(1) = y(2) = 0

Note that ODE can be written as x2y′′ + 2xy′ + λy = 0 which a Cauchy-Euler
equation. Its characteristic equation is m2 +m + λ = 0. The characteristic roots

are m1 =
−1−

√
1− 4λ

2
and m2 =

−1 +
√
1− 4λ

2
. We distinguish three cases

depending on the sign of 1− 4λ.
If λ < 1/4, then 1 − 4λ > 0. Both characteristic roots m1 and m2 are distinct

and real. The general solution of the ODE is

y = C1x
m1 + C2x

m2

The endpoints conditions are

C1 + C2 = 0, C12
m1 + C22

m2 = 0 .

Since m1 ̸= m2, the only solution is C1 = C2 = 0. Thus λ < 1/4 cannot be an
eigenvalue.

If λ = 1/4, then m1 = m2 = −1/2. The general solution of the ODE is

y = Ax−1/2 +Bx−1/2 lnx .

The endpoints conditions lead to A = 0 and then B2−1/2 ln 2 = 0. We have again
y ≡ 0 and λ = 1/4 is not an eigenvalue.

If λ > 1/4, set 1 − 4λ = −4ν2 with ν > 0. In this case the characteristic roots

are m1,2 = −−1

2
± iν. Two independent solutions of the ODE are xm1 and xm2 .

These are however (conjugate) complex-valued functions. We need to take their
real and imaginary part. For this recall that

xa+ib = xaxib = xaeib ln x = xa cos(b lnx) + xa sin(b lnx) .

The general solution of the ODE is therefore

y(x) = x−1/2(C1 cos(ν lnx) + C2 sin(ν lnx)) =
C1 cos(ν lnx) + C2 sin(ν lnx)√

x
.

The endpoints conditions give

y(1) = C1 = 0, y(2) =
C1 cos(ν ln 2) + C2 sin(ν ln 2)√

2
= 0 .
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Hence, C2 sin(ν ln 2) = 0. To obtain a nontrivial solution y, we need to have

sin(ν ln 2) = 0. Thus, ν =
nπ

ln 2
with n ∈ Z+. From 1 − 4λ = −4ν2, we get the

eigenvalues

λn =
1

4
+ ν2n =

1

4
+
( nπ

ln 2

)2
, n ∈ Z+

and the corresponding eigenfunctions

yn(x) =
1√
x
sin

nπ lnx

ln 2
.

2. Orthogonality of Eigenfunctions

In view of applying eigenfunctions of SL-problems

(p(x)y′)
′
+ [λr(x)− q(x)] y = 0

α1y(a) + α2y
′(a) = 0

β1y(b) + β2y
′(b) = 0

to expand functions and solve BVP, we introduce the following inner product in the
space C0

p [a, b] of piecewise continuous functions on the interval [a, b]. We define

the inner product with weight r(x) as follows: for f, g ∈ C0
p [a, b],

< f, g >r=

∫ b

a

f(x)g(x)r(x)dx .

The norm ||f ||r of a function f is defined as

||f ||r =
√
< f, f >r =

(∫ b

a

f(x)2r(x)

)1/2

.

Two function f, g ∈ C0
p [a, b] are said to be orthogonal if < f, g >r= 0. We are

going to show that for a given SL-problem, eigenfunctions corresponding to distinct
eigenvalues are orthogonal. More precisely, we have the following Theorem.

Theorem 2. Let y(x) and z(x) be two eigenfunctions of the SL-problem corre-
sponding to two distinct eigenvalues λ and µ. Then y and z are orthogonal with
respect to the inner product < , >r. That is,

< y, z >r=

∫ b

a

y(x)z(x)r(x)dx = 0 .

Proof. By using µrz = −(pz′)′ + qz, we get

µ

∫ b

a

y(x)z(x)r(x)dx =

∫ b

a

y(x) [−(p(x)z′(x))′ + q(x)z(x)] dx

= −
∫ b

a

y(x)(p(x)z′(x))′dx+

∫ b

a

q(x)y(x)z(x)dx

We use integration by parts for the first integral in the right hand side∫ b

a

y(x)(p(x)z′(x))′dx = [y(x)p(x)z′(x)]
b
a −

∫ b

a

p(x)y′(x)z′(x)dx

= [p(x)(y(x)z′(x)− y′(x)z(x))]
b
a +

+

∫ b

a

(p(x)y′(x))′z(x)dx
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Now we use the endpoints conditions to get

β1(y(b)z
′(b)− y′(b)z(b)) = (β1y(b))z

′(b))− y′(b)(β1z(b))
= −β2y

′(b)z′(b) + β2y
′(b)z′(b) = 0

Similarly,

β2(y(b)z
′(b)− y′(b)z(b)) = 0 .

Since β1 and β2 are not both zero, then y(b)z′(b) − y′(b)z(b) = 0. An analogous
argument gives y(a)z′(a)− y′(a)z(a) = 0. This imply that

[p(x)(y(x)z′(x)− y′(x)z(x))]
b
a = 0 .

Therefore, ∫ b

a

y(x)(p(x)z′(x))′dx =

∫ b

a

(p(x)y′(x))′z(x)dx

and then

µ

∫ b

a

y(x)z(x)r(x)dx = −
∫ b

a

(p(x)y′(x))′z(x)dx+

∫ b

a

q(x)y(x)z(x)dx

=

∫ b

a

[−(p(x)y′(x))′ + q(x)y(x)] z(x)dx

= λ

∫ b

a

y(x)z(x)r(x)dx .

Since λ ≠ µ, then necessarily∫ b

a

y(x)z(x)r(x)dx = 0 .

3. Generalized Fourier Series

Consider the regular SL-problem

(2)
(p(x)y′)

′
+ [λr(x)− q(x)] y = 0

α1y(a) + α2y
′(a) = 0

β1y(b) + β2y
′(b) = 0

We know that the eigenvalues λj form an increasing sequence and limj→∞ λj = ∞
and for each j, the eigenspace has dimension 1 (Theorem 1). Let yj(x) be an
eigenfunction corresponding to the eigenvalue λj . By analogy with Fourier series,
we are going to associates to each piecewise continuous function f on [a, b] a series
in the eigenfunctions yj :

f(x) ∼
∞∑
j=1

cjyj(x)

where the coefficients cj are given by

(3) cj =
< f, yj >r

||yj ||2r
=

∫ b

a
f(x)yj(x)r(x)dx∫ b

a
y2j (x)r(x)dx

The following Theorem says that the system of eigenfunctions {yj}j is complete in
the space C0

p [a, b] meaning that the above generalized Fourier series is a represen-
tation of f .
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Theorem 3. Let f be a piecewise smooth function on the interval [a, b] and let
{yj}j∈Z+ be the system of eigenfunctions of the SL-problem (2). Then we have the
following representation of the function f

fav(x) =

∞∑
j=1

cjyj(x) ,

where the coefficients cj are given by formula (3). In particular, at all points x at
which f is continuous, we have

f(x) =

∞∑
j=1

cjyj(x) ,

Example 1. Consider the SL-problems

y′′(x) + λy(x) = 0 0 < x < 1
y(0) = 0
y(1)− y′(1) = 0

It can be verified (I leave it as an exercise) that λ < 0 cannot be an eigenvalue.
For λ = 0, the general solution of the ODE is y(x) = A+ Bx. The first condition
y(0) = 0 gives A = 0. For y = Bx, the second condition becomes is trivially
satisfied (B −B = 0). Hence λ = 0 is an eigenvalue with eigenfunction y0 = x.

For λ > 0, we set λ = ν2, the general solution of the ODE is y(x) = C1 cos(νx)+
C2 sin(νx). The condition y(0) = 0 gives C1 = 0. With y = C2 sin(νx) the second
condition y(1)− y′(1) = 0 gives

C2 sin(ν)− C2ν cos(ν) = 0 .

In order to have a nontrivial solution (so C2 ̸= 0), the parameter ν > 0 must satisfy
the equation

sin(ν)− ν cos(ν) = 0 ⇔ tan(ν) = ν .

This equation has a unique solution νj in each interval (jπ, jπ + (π/2)). Indeed,

Positive roots of tanν =ν

ν
1

ν
2

ν
3

ν
4

consider the function g(ν) = sin ν − ν cos ν. We have g(jπ) = −(jπ)(−1)j and
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g(jπ + (π/2)) = (−1)j . Thus g(jπ)g(jπ + (π/2)) = −jπ < 0. The intermediate
value theorem implies that g has a zero νj between jπ and jπ + (π/2). Since the
derivative g′(ν) = ν sin ν does not change sign in the interval [jπ, jπ + (π/2)] ,
then g has a unique zero in the interval. The same argument shows that g has no
zeros in the interval [jπ + (π/2), jπ + π].

The set of eigenvalues and eigenfunctions of the SL-problem consists therefore
of λ0 = 0, y0(x) = x, and for j ∈ Z+

λj = ν2j , yj(x) = sin(νjx), where tan νj = νj , νj ∈ (jπ, jπ + (π/2))

The approximate values of the first eight values of νj and λj are listed in the
following table

j 1 2 3 4 5 6 7 8
νj 4.493 7.725 10.904 14.066 17.220 20.371 23.519 26.666
λj 20.2 59.7 118.9 197.9 296.6 415.0 553.2 711.1

Example 2. Let us find the representation of the function f(x) = 1 on [0, 1] in
terms of the eigenfunctions

x, sin(νjx), j = 1, 2, 3, · · ·

of the SL-problem of Example 1. That is,

1 = c0x+
∞∑
j=1

cj sin(νjx) , x ∈ (0, 1) .

The coefficients are given by

c0 =
< 1, x >

||x||2
, cj =

< 1, sin(νjx)

|| sin(νjx)||2
, j = 1, 2, 3, · · ·

Note that the weight in this example is r(x) ≡ 1. We have,

< 1, x >=

∫ 1

0

xdx =
1

2

and

< 1, sin(νjx) >=

∫ 1

0

sin(νjx)dx =
1− cos νj

νj
.

For the norms of the eigenfunctions, we have

||x||2 =

∫ 1

0

x2dx =
1

3

and (recall that sin νj = νj cos νj)

|| sin(νjx)||2 =

∫ 1

0

sin2(νjx)dx =
1

2

∫ 1

0

(1− cos(2νjx))dx

=
1

2

[
x− sin(2νjx)

2νj

]1
0

=
1

2

(
1− sin(2νj)

2νj

)
=

1

2

(
1− sin νj cos νj

νj

)
=

1− cos2 νj
2

=
sin2 νj

2
.
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We have therefore,

c0 =
1/2

1/3
=

3

2
, and cj =

(1− cos νj)/νj
(1− cos2 νj)/2

=
2

νj(1 + cos νj)
, j ≥ 1 .

The expansion of f(x) = 1 is

1 =
2

3
x+

∞∑
j=1

2

νj(1 + cos νj)
sin(νjx) x ∈ (0, 1) .

By using the approximate values of the νj given in the table, we get

1 =
2x

3
+ 0.569 sin(4.493x) + 0.229 sin(7.725x)+

+0.202 sin(10.904x) + 0.133 sin(14.067x) + · · ·

4. Applications to Boundary Value Problems

We illustrate the use of SL problems in solving boundary value problems.

Example 1. Consider the problem dealing with the one-dimensional heat propa-
gation. The temperature u(x, t) satisfies the problem

ut = kuxx 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = aux(L, t) t > 0
u(x, 0) = f(x) 0 < x < L

where a is a positive constant. Suppose that a < L. Let u(x, t) = X(x)T (t) be a
nontrivial solution of the homogeneous part (ut = kuxx, u(0, t) = 0, and u(L, t) =
aux(L, t)). The separation of variables leads to the following ODE problems for X
and T : {

X ′′(x) + λX(x) = 0
X(0) = 0, X(L) = aX ′(L)

and T ′(t) + kλT (t) = 0.

The X-problem is a regular SL-problem. It is analogous to the problem of the
example of the previous section. This time however λ = 0 is not an eigenvalue.
Indeed, for λ = 0, the general solution of the ODE is X(x) = A + Bx, the first
condition X(0) = 0 gives A = 0, and the second implies that BL = aB. Since
a < L, then B = 0 and X ≡ 0.

The eigenvalues and eigenfunctions are

λj = ν2j , Xj(x) = sin(νjx), j ∈ Z+

where νj is the j-th positive root of the equation

sin(νL) = aν cos(νL) ⇔ tan(νL) = aν .

For each j, the corresponding solution solution of the homogeneous part is uj(x, t) =
exp(−kν2j t) sin(νjx). The superposition principle gives the general series solution
as

u(x, t) =

∞∑
j=1

cje
−kν2

j t sin(νjx) .

In order for such a solution to satisfy the nonhomogeneous condition, we need to
have

u(x, 0) = f(x) =

∞∑
j=1

cj sin(νjx) .
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Therefore,

cj =
< f(x), sin(νjx) >

|| sin(νjx)||2
=

∫ L

0
f(x) sin(νjx)dx∫ L

0
sin2(νjx)dx

The norms (squared) of the eigenfunctions sin(νjx) can be calculated as in the
previous section:

|| sin(νjx)||2 =

∫ L

0

sin2(νjx)dx =
1

2

∫ L

0

(1− cos(2νjx))dx

=
1

2

[
x− sin(2νjx)

2νj

]L
0

=
1

2

(
L− sin(2νjL)

2νj

)
=

1

2

(
L− sin(νjL) cos(νjL)

νj

)
=

L− a cos2(νjL)

2
.

If for example f(x) = x, then

< f(x), sin(νjx) > =

∫ L

0

x sin(νjx)dx =

[
−x cos(νjx)

νj

]L
0

+

∫ L

0

cos(νjx)

νj
dx

= −L cos(νjL)

νj
+

sin(νjL)

ν2j

= −L cos(νjL)

νj
+

aνj cos(νjL)

ν2j

= (a− L)
cos(νjL)

νj

The coefficients cj are

cj =

(a− L)
cos(νjL)

νj
L− a cos2(νjL)

2

= 2(a− L)
cos(νjL)

νj(L− a cos2(νjL))
.

The solution of the BVP is

u(x, t) = (a− L)

∞∑
j=1

cos(νjL)

νj(L− a cos2(νjL))
exp(−kν2j t) sin(νjx) .

Example 2. The following problem models the wave propagation in a nonhomo-
geneous string (the mass density of the string is not constant).

utt = (1 + x)2utt, 0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = f(x), 0 < x < 1,
ut(x, 0) = g(x), 0 < x < 1.

The mass density of the string at the point x is 1/(1 + x)2. The separation of
variables u(x, t) = X(x)T (t) for the homogeneous part leads to the following ODE
problems  X ′′ +

λ

(1 + x)2
X = 0

X(0) = X(1) = 0
and T ′′ + λT = 0 .

The X-problem is a regular SL-problem with weight r(x) = 1/(1 + x)2.
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Now we need to find the eigenvalues and eigenfunctions of the X-problem. The
ODE can be written as (1 + x)2X ′′ + λX = 0. It is a Cauchy-Euler type equation
in the variable (1 + x). We seek then solutions of the form (1 + x)m. It leads to
the characteristic equation m2 −m+ λ = 0. The characteristic roots are therefore

m1,2 =
1

2
±
√

1

4
− λ

Depending on the parameter λ, we consider three cases.
If λ < 1/4, then m1 and m2 are real and distinct. The general solution of the

ODE is X(x) = C1(1 + x)m1 + C2(1 + x)m2 . The boundary conditions give

X(0) = C1 + C2 = 0, X(1) = C12
m1 + C22

m2 = 0.

The only solution is C1 = C2 = 0 and such λ cannot be an eigenvalue.
If λ = 1/4, then m1 = m2 = 1/2. The general solution of the ODE is X(x) =

A
√
1 + x + B

√
1 + x ln(1 + x). In this case again the boundary conditions imply

that A = B = 0 and λ = 1/4 cannot be an eigenvalue.
If λ > 1/4, then m1 and m2 are complex conjugate. Set λ = ν2 + (1/4), with

ν > 0, so that the characteristic roots are

m1 =
1

2
+ iν, m2 =

1

2
− iν .

The C-valued independent solutions of the ODE are

(1 + x)m1,2 = (1 + x)1/2(1 + x)±iν =
√
1 + xe±iν ln(1+x) .

The general R-valued solution is therefore

X(x) = A
√
1 + x cos(ν ln(1 + x)) +B

√
1 + x sin(ν ln(1 + x)) .

The condition X(0) = 0 gives A = 0, and then the condition X(1) = 0 gives

B
√
2 sin(ν ln 2) = 0. In order to obtain a nontrivial solution (B ̸= 0), the parameter

ν needs to satisfy

sin(ν ln 2) = 0 ⇔ ν ln 2 = jπ, j ∈ Z+ .

The eigenvalues and eigenfunctions of the X-problem are therefore

λj =
1

4
+ ν2j , Xj(x) =

√
1 + x sin(νj ln(1 + x)), where νj =

jπ

ln 2
.

For each j ∈ Z+, the corresponding independent solutions of the T -problem are

T 1
j (t) = cos(

√
λj t), and T 2

j (t) = sin(
√
λj t) .

The general series solution of the homogeneous part of the problem is

u(x, t) =
∞∑
j=1

[
Aj cos(

√
λj t) +Bj sin(

√
λj t)

]√
1 + x sin(νj ln(1 + x))

In order for such a series to satisfy the nonhomogeneous conditions, we need

u(x, 0) = f(x) =

∞∑
j=1

Aj

√
1 + x sin(νj ln(1 + x))

ut(x, 0) = g(x) =

∞∑
j=1

√
λj Bj

√
1 + x sin(νj ln(1 + x))
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The coefficients Aj and Bj are given by

Aj =
< f(x),

√
1 + x sin(νj ln(1 + x)) >r

||
√
1 + x sin(νj ln(1 + x))||2r

,

Bj =
< g(x),

√
1 + x sin(νj ln(1 + x)) >r√

λj ||
√
1 + x sin(νj ln(1 + x))||2r

5. Other Sturm-Liouville Problems

Other SL-problems important in applications include the periodic Sturm-Liouville
problem:

(p(x)y′)
′
+ [λr(x)− q(x)] y = 0

y(a) = y(b)
y′(a) = y′(b)

where the coefficient p satisfies p(a) = p(b). The set of eigenvalues is as in Theorem
1 but this time for each eigenvalue λj , there are two independent eigenfunctions
y1j (x) and y2j (x).

Example 1. The following periodic SL-problem was encountered in connection
with BVPs in polar coordinates

Θ′′(θ) + λΘ(θ) = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

The eigenvalues are λj = j2 and the eigenfunctions are Θ1
j (θ) = cos(jθ) and Θ2

j (θ) =
sin(jθ).

The hypotheses on the coefficients of the ODE in a regular SL-problem includes
p(x) > 0 and r(x) > 0 on [a, b]. If any one these hypotheses is weakened, it lead to
the singular Sturm-Liouville problem. For some singular problems, the boundary
conditions can also be weakened or are not needed. The following singular SL-
problem will be studied in more details. It is related to Bessel functions.

(xy′)′ +

(
−m2

x
+ λx

)
y = 0, 0 < x < L,

y(L) = 0

Here p(x) = x and r(x) = x, both functions vanish at x = 0. The boundary
condition at x = 0 is not needed. This equation is related to boundary value
problems in cylindrical coordinates.

Another singular problem of interest is the Legendre equation(
(1− x2)y′

)′
+ n(n− 1)y = 0 − 1 < x < 1

This time r(x) = 1 and p(x) = 1− x2 vanishes at both ends ±1 of the interval. No
boundary conditions are needed. This problem appears in connection to boundary
value problems in spherical coordinates.

6. Exercises

For exercises 1 to 4: (a) find the eigenvalues and eigenfunctions of the Sturm-
Liouville problems; (b) find the generalized Fourier series of the functions f(x) = 1
and g(x) = x.

Exercise 1. y′′ + λy = 0, 0 < x < 1, y(0) = 0 and y′(1) = 0
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Exercise 2. y′′+λy = 0, −1 < x < 1, y(−1) = y(1) and y′(−1) = y′(1) (periodic
SL problem)

Exercise 3. y′′ + λy = 0, 0 < x < 1, y(0) = 0 and y(1) + 2y′(1) = 0

Exercise 4. y′′ + λy = 0, 0 < x < 1, y(0) = y′(0) and y(1) = y′(1)

Exercise 5. Consider the problem

x2y′′ + xy′ + λy = 0, 1 < x < L, y(1) = 0, y(L) = 0,

with L > 1.
(1) Put the ODE in adjoint form: (py′)′+(q+λr)y = 0 (Hint : multiply by 1/x).
(2) What is the inner product related to this problem?
(3) Find the eigenvalues and eigenfunctions (note: the ODE is Cauchy-Euler).
(4) Find the generalized Fourier series of the function f(x) = 1 (Hint : when

computing the Fourier coefficients cj , you can use the substitution t = lnx in the
integral).

(5) Same question for the function g(x) = x.

Exercise 6. Same questions as in Exercise 5 for the SL-problem

x2y′′ + xy′ + λy = 0, 1 < x < L, y′(1) = 0, y′(L) = 0,

Exercise 7. Solve the BVP

ut = 2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
2u(π, t) + ux(π, t) = 0 t > 0
u(x, 0) = sinx 0 < x < π

Exercise 8. Solve the BVP

ut = uxx 0 < x < π, t > 0,
ux(0, t) = 0 t > 0
u(π, t) = ux(π, t) t > 0
u(x, 0) = 1 0 < x < π

Exercise 9. Solve the BVP

utt = c2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
u(π, t)− ux(π, t) = 0 t > 0
u(x, 0) = sinx 0 < x < π
ut(x, 0) = 0 0 < x < π

Exercise 10. Solve the BVP

utt = c2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
u(π, t)− ux(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π
ut(x, 0) = f(x) 0 < x < π

where

f(x) =

{
0 if 0 < x < (π/2),
1 if (π/2) < x < π.
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Exercise 12. Solve the BVP

utt = uxx 0 < x < π, t > 0,
ux(0, t) = au(0, t) t > 0
ux(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π
ut(x, 0) = 1 0 < x < π

Exercise 13. Solve the BVP

ut = (1 + x)2uxx 0 < x < 1, t > 0,
u(0, t) = 0 u(1, t) = 0 t > 0
u(x, 0) = x(1− x)

√
1 + x 0 < x < 1


