Fall 2022 - Real Analysis Homework 10

1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that there is an increasing function on [a, b] that is continuous only at points in $[a, b] \setminus C$.

2. Show that there is a strictly increasing function on [0, 1] that is continuous only at the irrational numbers in [0, 1].

3. Let f be a monotone function on a subset $E \subset R$. Show that f is continuous except possibly at a countable number of points in E.

4. Let
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
 be defined by $f(x) = x \sin \frac{1}{x}$ if $x \neq 0$ and $f(0) = 0$. Find $D^+f(0)$ and $D^-f(0)$.

5. (a) Assume that $f : [a, b] \to \mathbb{R}$ is continuous and that there exists $\epsilon > 0$ such that $D^-f(x) \ge \epsilon$ for all $x \in (a, b)$. Prove that f is monotone increasing on [a, b]. Here $D^-f(x) = \liminf_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$. Hint: Use a proof by contradiction. Suppose that f is not increasing and deduce that there exists $y \in (a, b)$ such that $D^-f(y) \le 0$.

(b) Assume that $f : [a, b] \longrightarrow \mathbb{R}$ is continuous that $D^- f(x) \ge 0$ for all $x \in (a, b)$. Prove that f is monotone increasing on [a, b]. Hint: Consider the function $g(x) = f(x) + \epsilon x$ where $\epsilon > 0$.

6. Let f be continuous on \mathbb{R} . Is there an open interval on which f is monotone? *Hint*: The Weierstrass function W(x) given by

$$W(x) = \sum_{n=0}^{\infty} b^n \cos(a^n \pi x) \quad \text{with } b \in (0,1), \quad a \in \mathbb{N}, \text{ such that } ab > 1 + \frac{3\pi}{2},$$

is continuous in \mathbb{R} and is not differentiable at any point of \mathbb{R} .

7. Let I and J be closed, bounded intervals and $\gamma > 0$ be such that $\ell(I) > \gamma \ell(J)$. Assume that $I \cap J \neq \emptyset$. Show that if $\gamma \ge 1/2$, then $J \subset 5 * I$, where 5 * I denotes the interval with the same center as I and five times its length. Is the same true if $0 < \gamma < 1/2$?

8. Show that a set E of real numbers has measure zero if and only if there is a countable collection of open intervals $\{I_k\}_{k=1}^{\infty}$ for which each point in E belongs to infinitely many of the I_k 's and $\sum_{k=1}^{\infty} \ell(I_k) < \infty$.

9. (Riesz-Nagy) Let *E* be a set of measure zero contained in the open interval (a, b). According to the preceding problem, there is a countable collection of open intervals contained in (a,b), $\{(c_k, d_k)\}_{k=1}^{\infty}$ for which each point in *E* belongs to infinitely many intervals' in the collection and $\sum_{k=1}^{\infty} (d_k - c_k) < \infty$. Define a function *f* on (a, b) by

$$f(x) = \sum_{k=1}^{\infty} \ell((c_k, d_k) \cap (-\infty, x)) \text{ for all } x \in (a, b)$$

Show that f is increasing and fails to be differentiable at each point in E. Hint: Note that if $x \in E$, then there exists $\{(c_{k_j}, d_{k_j})\}_{j=1}^{\infty}$ such that $x \in (c_{k_j}, d_{k_j})$ for all j. Use this to show that for every $n \in \mathbb{N}$ there exists $\delta > 0$ such that $f(x+h) - f(x) \ge nh$ for all $0 < h < \delta$.

10. Compute the upper and lower derivatives of the characteristic function of the rationals. χ_0 .

11. Let g be integrable over [a, b]. Define the antiderivative of g to be the function f defined on [a, b] by $f(x) = \int_{a}^{x} g(t)dt$ for $x \in [a, b]$. Show that f is differentiable almost everywhere on (a, b). Hint: Start with the case g nonnegative.

12. Show that a strictly increasing function that is defined on an interval is measurable and then use this to show that a monotone function that is defined on an interval is measurable

13. The goal of this exercise is to show that a continuous function f on [a, b] is lipschitz if its upper and lower derivatives are bounded on (a, b) (i.e. there exists M > 0 such $|D^{\pm}f(x)| < M$ for all $x \in (a, b)$)

• Let h be a function defined on an interval (α, β) . Show that if c is a local minimum of h, then $D^{-}h(c) \leq 0 \leq D^{+}h(c)$.

• Let $a < x_1 < x_2 < b$. Consider the function

$$g(x) = f(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1)$$

Show that there exists $c \in [x_1, x_2]$ such that $D^-g(c) \le 0 \le D^+g(c)$. • Deduce that $|f(x_2) - f(x_1)| \le M(x_2 - x_1)$

14. Let $f(x) = \sin x$ on $[0, 2\pi]$. Find two increasing functions g and h for which f = g - h on $[0, 2\pi]$.

15. Determine whether or not the functions f and g defined below are in BV[-1, 1]:

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x^2} & \text{if } 0 < |x| \le 1 \\ 0 & \text{if } x = 0 \end{cases} \quad \text{and} \quad g(x) = \begin{cases} x^2 \cos \frac{1}{x} & \text{if } 0 < |x| \le 1 \\ 0 & \text{if } x = 0 \end{cases}$$

16. Let $\{f_n\}$ be a sequence of real-valued functions on [a, b] that converges pointwise on [a, b] to the real-valued function f. Show that $V(f) \leq \liminf_{n \to \infty} V(f_n)$.

17. Let f be a function that fails to be of bounded variation on [0, 1]. Show that there is a point $x_0 \in [0, 1]$ such that f fails to be of bounded variation on each nondegenerate closed subinterval of [0, 1] that contains x_0 .