Fall 2022 - Real Analysis Homework 10

1. Let C be a countable subset of the nondegenerate closed, bounded interval $[a, b]$. Show that there is an increasing function on $[a, b]$ that is continuous only at points in $[a, b] \backslash C$.
2. Show that there is a strictly increasing function on $[0,1]$ that is continuous only at the irrational numbers in $[0,1]$.
3. Let f be a monotone function on a subset $E \subset R$. Show that f is continuous except possibly at a countable number of points in E.
4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x)=x \sin \frac{1}{x}$ if $x \neq 0$ and $f(0)=0$. Find $D^{+} f(0)$ and $D^{-} f(0)$.
5. (a) Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and that there exists $\epsilon>0$ such that $D^{-} f(x) \geq \epsilon$ for all $x \in(a, b)$. Prove that f is monotone increasing on $[a, b]$. Here $D^{-} f(x)=\liminf _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}$. Hint: Use a proof by contradiction. Suppose that f is not increasing and deduce that there exists $y \in(a, b)$ such that $D^{-} f(y) \leq 0$.
(b) Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous that $D^{-} f(x) \geq 0$ for all $x \in(a, b)$. Prove that f is monotone increasing on $[a, b]$. Hint: Consider the function $g(x)=f(x)+\epsilon x$ where $\epsilon>0$.
6. Let f be continuous on \mathbb{R}. Is there an open interval on which f is monotone? Hint: The Weierstrass function $W(x)$ given by

$$
W(x)=\sum_{n=0}^{\infty} b^{n} \cos \left(a^{n} \pi x\right) \quad \text { with } b \in(0,1), \quad a \in \mathbb{N}, \text { such that } a b>1+\frac{3 \pi}{2}
$$

is continuous in \mathbb{R} and is not differentiable at any point of \mathbb{R}.
7. Let I and J be closed, bounded intervals and $\gamma>0$ be such that $\ell(I)>\gamma \ell(J)$. Assume that $I \cap J \neq \emptyset$. Show that if $\gamma \geq 1 / 2$, then $J \subset 5 * I$, where $5 * I$ denotes the interval with the same center as I and five times its length. Is the same true if $0<\gamma<1 / 2$?
8. Show that a set E of real numbers has measure zero if and only if there is a countable collection of open intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ for which each point in E belongs to infinitely many of the I_{k} 's and $\sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\infty$.
9. (Riesz-Nagy) Let E be a set of measure zero contained in the open interval (a, b). According to the preceding problem, there is a countable collection of open intervals contained in $(a, b),\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{\infty}$ for which each point in E belongs to infinitely many intervals' in the collection and $\sum_{k=1}^{\infty}\left(d_{k}-c_{k}\right)<\infty$. Define a function f on (a, b) by

$$
f(x)=\sum_{k=1}^{\infty} \ell\left(\left(c_{k}, d_{k}\right) \cap(-\infty, x)\right) \quad \text { for all } x \in(a, b)
$$

Show that f is increasing and fails to be differentiable at each point in E. Hint: Note that if $x \in E$, then there exists $\left\{\left(c_{k_{j}}, d_{k_{j}}\right)\right\}_{j=1}^{\infty}$ such that $x \in\left(c_{k_{j}}, d_{k_{j}}\right)$ for all j. Use this to show that for every $n \in \mathbb{N}$ there exists $\delta>0$ such that $f(x+h)-f(x) \geq n h$ for all $0<h<\delta$.
10. Compute the upper and lower derivatives of the characteristic function of the rationals. $\chi_{\mathbb{Q}}$.
11. Let g be integrable over $[a, b]$. Define the antiderivative of g to be the function f defined on $[a, b]$ by $f(x)=\int_{a}^{x} g(t) d t$ for $x \in[a, b]$. Show that f is differentiable almost everywhere on (a, b). Hint: Start with the case g nonnegative.
12. Show that a strictly increasing function that is defined on an interval is measurable and then use this to show that a monotone function that is defined on an interval is measurable
13. The goal of this exercise is to show that a continuous function f on $[a, b]$ is lipschitz if its upper and lower derivatives are bounded on (a, b) (i.e. there exists $M>0$ such $\left|D^{ \pm} f(x)\right|<M$ for all $\left.x \in(a, b)\right)$

- Let h be a function defined on an interval (α, β). Show that if c is a local minimum of h, then $D^{-} h(c) \leq 0 \leq D^{+} h(c)$.
- Let $a<x_{1}<x_{2}<b$. Consider the function

$$
g(x)=f(x)-\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Show that there exists $c \in\left[x_{1}, x_{2}\right]$ such that $D^{-} g(c) \leq 0 \leq D^{+} g(c)$.

- Deduce that $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq M\left(x_{2}-x_{1}\right)$

14. Let $f(x)=\sin x$ on $[0,2 \pi]$. Find two increasing functions g and h for which $f=g-h$ on $[0,2 \pi]$.
15. Determine whether or not the functions f and g defined below are in $\mathrm{BV}[-1,1]$:

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \cos \frac{1}{x^{2}} & \text { if } 0<|x| \leq 1 \\
0 & \text { if } x=0
\end{array} \quad \text { and } g(x)= \begin{cases}x^{2} \cos \frac{1}{x} & \text { if } 0<|x| \leq 1 \\
0 & \text { if } x=0\end{cases}\right.
$$

16. Let $\left\{f_{n}\right\}$ be a sequence of real-valued functions on $[a, b]$ that converges pointwise on $[a, b]$ to the real-valued function f. Show that $V(f) \leq \liminf _{n \rightarrow \infty} V\left(f_{n}\right)$.
17. Let f be a function that fails to be of bounded variation on $[0,1]$. Show that there is a point $x_{0} \in[0,1]$ such that f fails to be of bounded variation on each nondegenerate closed subinterval of $[0,1]$ that contains x_{0}.
