Fall 2022 - Real Analysis Homework 11

1. Show that if f is an increasing function on $[a, b]$, then f is absolutely continuous on $[a, b]$ if and only if for each $\epsilon>0$, there is a $\delta>0$ such that for any measurable subset $E \subset[a, b]$, with $m(E)<\delta$, we have $m(f(E))<\epsilon$.
2. Use the preceding problem to show that an increasing absolutely continuous function f on $[a, b]$ maps sets of measure zero onto sets of measure zero. Conclude that the Cantor-Lebesgue function ϕ is not absolutely continuous on $[0,1]$ since the function ψ, defined by $\psi(x)=x+\phi(x)$ for $0 \leq x \leq 1$, maps the Cantor set to a set of measure 1 .
3. Let f be an increasing absolutely continuous function on $[a, b]$. Show that f maps measurable sets to measurable sets. Hint: First show that f maps an F_{σ} to an F_{σ}-set and a set of measure zero to a set of measure zero (previous problem).
4. Show that both the sum and product of absolutely continuous functions are absolutely continuous.
5. Let f and g be functions on $[-1,1]$ given by $f(x)=x^{1 / 3}$ and $g(x)=x^{2} \cos (\pi / x)$ if $x \neq 0$ and $g(0)=0$.
(1) Show that $f, g \in \mathrm{AC}[-1,1]$.
(2) Find $V(f \circ g, P)$, where P is the partition of $[-1,1]$ that consists of the points

$$
x_{0}=-1, x_{1}=0, x_{2}=\frac{1}{2 n}, x_{3}=\frac{1}{2 n-1}, \cdots, x_{2 n}=\frac{1}{2}, x_{2 n+1}=1
$$

(3) Deduce that $f \circ g \notin \mathrm{BV}[-1,1]$ and so $f \circ g \notin \mathrm{AC}[-1,1]$.
6. Let f be Lipschitz on \mathbb{R} and g be absolutely continuous on $[a, b]$. Show that the composition $f \circ g$ is absolutely continuous on $[a, b]$.
7. Let f be absolutely continuous on \mathbb{R} and g be absolutely continuous and strictly monotone on $[a, b]$. Show that the composition $f \circ g$ is absolutely continuous on $[a, b]$.
8. Let f be continuous on $[a, b]$ and differentiable almost everywhere on (a, b). Show that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) \Longleftrightarrow \int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} f(x) d x
$$

9. Let f be continuous on $[a, b]$ and differentiable almost everywhere on (a, b). Show that if $\left\{D_{1 / n} f\right\}_{n}$ is uniformly integrable, then $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Hint: Vitali Convergence Theorem.
10. Let f be continuous on $[a, b]$ and differentiable almost everywhere on (a, b). Suppose that there exists a nonnegative function $g \in \mathcal{L}(a, b)$ such that $\left|D_{1 / n} f\right| \leq g$ a.e. on $[a, b]$ for all $n \in \mathbb{N}$. Show that $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a)$.
11. (Integration by Part). Let $f, g \in \mathrm{AC}[a, b]$. Show that

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

12. Let $f \in \mathrm{AC}[a, b]$. Show that f is Lipschitz on $[a, b]$ if and only if there is a $c>0$ for which $\left|f^{\prime}\right| \leq c$ a.e.on [$a, b]$.
13. Let $f \in \mathrm{AC}[a, b]$ be strictly increasing. Show that
(1) For any open set $U \subset[a, b], \int_{U} f^{\prime}(x) d x=m(f(U))$.
(2) For any G_{δ} set $G \subset[a, b], \int_{G} f^{\prime}(x) d x=m(f(G))$ Hint: You might need to use the property of AC continuous function $g \forall \epsilon>0, \exists \delta>0$ such that if $m(E)<\delta$, then $m(g(E))<\epsilon$.
(3) For any set $Z \subset[a, b]$ with measure $0, \int_{Z} f^{\prime}(x) d x=m(f(Z))=0$.
(4) For any measurable set $E \subset[a, b], \int_{E} f^{\prime}(x) d x=m(f(E))$.
(5) Let $c=f(a)$ and $d=f(b)$. Let ϕ be a simple function on $[c, d]$. Show that

$$
\int_{c}^{d} \phi(y) d y=\int_{a}^{b} \phi(f(x)) f^{\prime}(x) d x
$$

(6) Show that if $g \in \mathcal{L}(c, d)$ is nonnegative, then $\int_{c}^{d} g(y) d y=\int_{a}^{b} g(f(x)) f^{\prime}(x) d x$.

