Fall 2022 - Real Analysis Homework 11

1. Show that if f is an increasing function on [a, b], then f is absolutely continuous on [a, b] if and only if for each $\epsilon > 0$, there is a $\delta > 0$ such that for any measurable subset $E \subset [a, b]$, with $m(E) < \delta$, we have $m(f(E)) < \epsilon$.

2. Use the preceding problem to show that an increasing absolutely continuous function f on [a, b] maps sets of measure zero onto sets of measure zero. Conclude that the Cantor-Lebesgue function ϕ is not absolutely continuous on [0, 1] since the function ψ , defined by $\psi(x) = x + \phi(x)$ for $0 \le x \le 1$, maps the Cantor set to a set of measure 1.

3. Let f be an increasing absolutely continuous function on [a, b]. Show that f maps measurable sets to measurable sets. *Hint*: First show that f maps an F_{σ} to an F_{σ} -set and a set of measure zero to a set of measure zero (previous problem).

- 4. Show that both the sum and product of absolutely continuous functions are absolutely continuous.
- 5. Let f and g be functions on [-1, 1] given by $f(x) = x^{1/3}$ and $g(x) = x^2 \cos(\pi/x)$ if $x \neq 0$ and g(0) = 0.
 - (1) Show that $f, g \in AC[-1, 1]$.
 - (2) Find $V(f \circ g, P)$, where P is the partition of [-1, 1] that consists of the points

$$x_0 = -1, \ x_1 = 0, \ x_2 = \frac{1}{2n}, \ x_3 = \frac{1}{2n-1}, \dots, \ x_{2n} = \frac{1}{2}, \ x_{2n+1} = 1.$$

(3) Deduce that $f \circ g \notin BV[-1, 1]$ and so $f \circ g \notin AC[-1, 1]$.

6. Let f be Lipschitz on \mathbb{R} and g be absolutely continuous on [a, b]. Show that the composition $f \circ g$ is absolutely continuous on [a, b].

7. Let f be absolutely continuous on \mathbb{R} and g be absolutely continuous and strictly monotone on [a, b]. Show that the composition $f \circ g$ is absolutely continuous on [a, b].

8. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that

$$\int_{a}^{b} f'(x)dx = f(b) - f(a) \iff \int_{a}^{b} \lim_{n \to \infty} D_{1/n}f(x)dx = \lim_{n \to \infty} \int_{a}^{b} D_{1/n}f(x)dx$$

9. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that if $\{D_{1/n}f\}_n$ is uniformly integrable, then $\int_a^b f'(x)dx = f(b) - f(a)$. Hint: Vitali Convergence Theorem.

10. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Suppose that there exists a nonnegative function $g \in \mathcal{L}(a, b)$ such that $|D_{1/n}f| \leq g$ a.e. on [a, b] for all $n \in \mathbb{N}$. Show that $\int_a^b f'(x)dx = f(b) - f(a)$.

11. (Integration by Part). Let $f, g \in AC[a, b]$. Show that

$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x)dx$$

12. Let $f \in AC[a, b]$. Show that f is Lipschitz on [a, b] if and only if there is a c > 0 for which $|f'| \le c$ a.e.on [a, b].

13. Let $f \in AC[a, b]$ be strictly increasing. Show that

- (1) For any open set $U \subset [a, b], \int_{U} f'(x) dx = m(f(U)).$
- (2) For any G_{δ} set $G \subset [a, b]$, $\int_{G} f'(x)dx = m(f(G))$ Hint: You might need to use the property of AC continuous function $g \ \forall \epsilon > 0$, $\exists \delta > 0$ such that if $m(E) < \delta$, then $m(g(E)) < \epsilon$.
- (3) For any set $Z \subset [a, b]$ with measure $0, \int_Z f'(x)dx = m(f(Z)) = 0.$

- (4) For any measurable set $E \subset [a, b]$, $\int_E f'(x)dx = m(f(E))$. (5) Let c = f(a) and d = f(b). Let ϕ be a simple function on [c, d]. Show that

$$\int_{c}^{d} \phi(y) dy = \int_{a}^{b} \phi(f(x)) f'(x) dx.$$

(6) Show that if $g \in \mathcal{L}(c, d)$ is nonnegative, then $\int_{c}^{d} g(y) dy = \int_{a}^{b} g(f(x)) f'(x) dx$.