Fall 2022 - Real Analysis

Homework 12

1. Show that the collection of all simple functions on E is dense in $L^{p}(E)$.
2. Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $p \geq 1$.

- For $t \geq 0$, let $A_{t}=\left\{x \in \mathbb{R}^{n}:|f(x)|^{p}>t\right\}$ and consider the function $g(t, x)$ defined on $[0, \infty) \times \mathbb{R}^{n}$ by $g(t, x)=\chi_{A_{t}}(x)$. Show that

$$
\int_{E}|f(x)|^{p} d x=\int_{[0, \infty) \times \mathbb{R}^{n}} g(t, x) d t d x
$$

- Show that $\int_{0}^{\infty} m\left(A_{t}\right) d t=\int_{0}^{\infty} p t^{p-1} m\left(\left\{x \in \mathbb{R}^{n}:|f(x)|>t\right\}\right) d t$.
- Deduce that $\int_{E}|f(x)|^{p} d x=\int_{0}^{\infty} p t^{p-1} m\left(\left\{x \in \mathbb{R}^{n}:|f(x)|>t\right\}\right) d t$.

Hint: You can use Fubini's Theorem.
3. When does Hölder's inequality becomes an equality? When does equality Minkowski inequality becomes an equality?
4. Let $1 \leq r<p<s$. Show that $L^{r}\left(\mathbb{R}^{n}\right) \cap L^{s}\left(\mathbb{R}^{n}\right) \subset L^{p}\left(\mathbb{R}^{n}\right)$. Hint: For $f \in L^{p}\left(\mathbb{R}^{n}\right)$, consider the sets $E_{1}=\left\{x \in \mathbb{R}^{n}:|f(x)|<1\right\}$ and $E_{2}=\left\{x \in \mathbb{R}^{n}:|f(x)| \geq 1\right\}$.
5. Prove that if (p, q) is a conjugate pair with $p \geq 1,\left\{f_{j}\right\}_{j} \in L^{p}\left(\mathbb{R}^{n}\right)$ converges to f in L^{p}, and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then $\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{j} g d x=\int_{\mathbb{R}^{n}} f g d x$
6. Consider the sequence of functions $\left\{g_{n}\right\}_{n}$ on $[0,1]$ given by $g_{n}=n \chi_{A_{n}}$ where $A_{n}=\left[0,1 / n^{3}\right]$.

- Show that if $f \in L^{2}[0,1]$, then $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x=0$.
- Find a function $f \in L^{1}[0,1]$ such that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x \neq 0$. Hint: Consider $f(x)=x^{\alpha}$ for some real number α.

7. Let $1 \leq p \leq \infty$.

- Find all $a \in \mathbb{R}$ such that $f_{a}(x)=x^{a} \chi_{[0,1]}(x) \in L^{p}(\mathbb{R})$
- Find all $b \in \mathbb{R}$ such that $g_{b}(x)=x^{b} \chi_{[1, \infty)}(x) \in L^{p}(\mathbb{R})$

8. (L^{p}-version of Chebychev's inequality). Let $E \subset \mathbb{R}^{n}$ and $f: E \longrightarrow \overline{\mathbb{R}}$ be a measurable function. Prove that for any $\lambda>0$, we have

$$
m(\{|f|>\lambda\}) \leq \frac{1}{\lambda^{p}} \int_{E}|f|^{p} d x
$$

9. Let $E \subset \mathbb{R}^{n}$ with $m(E)<\infty$ and let $f: E \longrightarrow \overline{\mathbb{R}}$ be such that f is measurable. The aim of this exercise is to prove that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.

- Case $\|f\|_{\infty}=\infty$. Show that in this case $\|f\|_{p}=\infty$ for all $p \geq 1$. Hint: You can use Exercise 8.
- Case $\|f\|_{\infty}=0$. Show that in this case $\|f\|_{p}=0$ for all p.
- Case $\|f\|_{\infty}=C$ with $0<C<\infty$.
(1) Show that $\|f\|_{p}^{p} \leq C^{p} m(E)$ and deduce that $\limsup _{p \rightarrow \infty}\|f\|_{p} \leq C$.
(2) Let $\epsilon>0$ and $A_{\epsilon}=\{x \in E,|f(x)| \geq C-\epsilon\}$. Show that

$$
\|f\|_{p}^{p} \geq(C-\epsilon)^{p} m\left(A_{\epsilon}\right)
$$

and deduce that $\liminf _{p \rightarrow \infty}\|f\|_{p} \geq C-\epsilon$
(3) Deduce that $\lim _{p \rightarrow \infty}\|f\|_{p}=C$.
10. The aim of this problem is to establish a generalized of Hölder inequality. More precisely, given a measurable set $E \subset \mathbb{R}^{k}$, positive numbers p_{1}, \cdots, p_{n}, r such that

$$
\frac{1}{r}=\frac{1}{p_{1}}+\cdots \frac{1}{p_{n}},
$$

and functions $f_{1} \in L^{p_{1}}(E), \cdots f_{n} \in L^{p_{n}}(E)$, then

$$
f=f_{1} f_{2} \cdots f_{n} \in L^{r}(E) \quad \text { and } \quad\|f\|_{r} \leq\left\|f_{1}\right\|_{p_{1}} \cdot\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{n}\right\|_{p_{n}}
$$

- Let p, q and r be positive numbers such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. Show that

$$
\frac{t}{r} \leq \frac{t^{p / r}}{p}+\frac{1}{q} \quad \forall t \geq 0
$$

- Show that

$$
\frac{(a b)^{r}}{r} \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \quad \forall a, b \geq 0
$$

Hint: Use the previous inequality with $t=a^{r} b^{r-q}$.

- Let $f \in L^{p}(E), g \in L^{q}(E)$ and r such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. Show that $f g \in L^{r}(E)$ and $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$. Hint: Let $F=\frac{f}{\|f\|_{p}}$ and $G=\frac{g}{\|g\|_{p}}$. Use the previous inequality with $a=F$ and $b=G$.
- Use induction to establish the generalized Hölder inequality.

11. Let $p, q \in(0, \infty]$ with $p<q$ and let E be a measurable subset of \mathbb{R}^{n}.

- Show that if $m(E)<\infty$, then $L^{q}(E) \subsetneq L^{p}(E)$ and

$$
\|f\|_{p} \leq m(E)^{\frac{1}{p}-\frac{1}{q}}\|f\|_{q} \quad \forall f \in L^{q}(E)
$$

Hint: Apply the generalized Hölder inequality to f and χ_{E}.

- Show that if $E=\mathbb{R}^{n}$, then $L^{q}(E) \nsubseteq L^{p}(E)$ and $L^{p}(E) \nsubseteq L^{q}(E)$. Hint: Consider $f(x)=|x|^{\alpha}$.

12. The aim of this problem is to show (by contradiction) that for a measurable function $\phi: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ and for $1 \leq p<\infty$, if $f \phi \in L^{p}\left(\mathbb{R}^{n}\right)$ for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then $\phi \in L^{\infty}\left(\mathbb{R}^{n}\right)$.

- Suppose that $\phi \notin L^{\in}\left(\mathbb{R}^{n}\right)$. Show that for there exists a strictly increasing sequence $\left\{k_{j}\right\}_{j=1}^{\infty}$ in \mathbb{N}, such that for every $j \in \mathbb{N}$, the set $E_{j}=\left\{x \in \mathbb{R}^{n} ; k_{j} \leq|\phi(x)|<k_{j+1}\right\}$ has a positive measure.
- Define a function $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ by $f=\sum_{j=1}^{\infty} c_{j} \chi_{E_{j}}$ where the c_{j} 's are positive numbers. Show that

$$
\int_{\mathbb{R}^{n}}|f \phi|^{p} d x \geq \sum_{j=1}^{\infty} k_{j}^{p} c_{j}^{p} \mathrm{~m}\left(E_{j}\right)
$$

- Show that for an appropriate choice the coefficients c_{j}, we have $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $f \phi \notin L^{p}\left(\mathbb{R}^{n}\right)$.

