Fall 2022 - Real Analysis Homework 12

- **1.** Show that the collection of all simple functions on E is dense in $L^{p}(E)$.
- **2.** Let $f \in L^p(\mathbb{R}^n)$ with $p \ge 1$.
 - For $t \ge 0$, let $A_t = \{x \in \mathbb{R}^n : |f(x)|^p > t\}$ and consider the function g(t, x) defined on $[0, \infty) \times \mathbb{R}^n$ by $g(t, x) = \chi_{A_t}(x)$. Show that

$$\int_E |f(x)|^p dx = \int_{[0, \infty) \times \mathbb{R}^n} g(t, x) dt dx.$$
• Show that
$$\int_0^\infty m(A_t) dt = \int_0^\infty p t^{p-1} m\left(\{x \in \mathbb{R}^n : |f(x)| > t\}\right) dt.$$

• Deduce that
$$\int_{E} |f(x)|^{p} dx = \int_{0}^{\infty} pt^{p-1} m\left(\left\{x \in \mathbb{R}^{n} : |f(x)| > t\right\}\right) dt.$$

Hint: You can use Fubini's Theorem.

3. When does Hölder's inequality becomes an equality? When does equality Minkowski inequality becomes an equality?

4. Let $1 \leq r . Show that <math>L^r(\mathbb{R}^n) \cap L^s(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$. *Hint:* For $f \in L^p(\mathbb{R}^n)$, consider the sets $E_1 = \{x \in \mathbb{R}^n : |f(x)| < 1\}$ and $E_2 = \{x \in \mathbb{R}^n : |f(x)| \geq 1\}$.

5. Prove that if (p,q) is a conjugate pair with $p \ge 1$, $\{f_j\}_j \in L^p(\mathbb{R}^n)$ converges to f in L^p , and $g \in L^q(\mathbb{R}^n)$, then $\lim_{j\to\infty} \int_{\mathbb{R}^n} f_j g dx = \int_{\mathbb{R}^n} fg dx$

6. Consider the sequence of functions $\{g_n\}_n$ on [0, 1] given by $g_n = n\chi_{A_n}$ where $A_n = [0, 1/n^3]$.

- Show that if $f \in L^2[0, 1]$, then $\lim_{n \to \infty} \int_0^1 f(x)g_n(x)dx = 0$.
- Find a function $f \in L^1[0, 1]$ such that $\lim_{n \to \infty} \int_0^1 f(x)g_n(x)dx \neq 0$. Hint: Consider $f(x) = x^{\alpha}$ for some real number α .

7. Let $1 \leq p \leq \infty$.

- Find all $a \in \mathbb{R}$ such that $f_a(x) = x^a \chi_{[0, 1]}(x) \in L^p(\mathbb{R})$
- Find all $b \in \mathbb{R}$ such that $g_b(x) = x^b \chi_{[1,\infty)}(x) \in L^p(\mathbb{R})$

8. (L^p-version of Chebychev's inequality). Let $E \subset \mathbb{R}^n$ and $f : E \longrightarrow \overline{\mathbb{R}}$ be a measurable function. Prove that for any $\lambda > 0$, we have

$$m\left(\{|f|>\lambda\}\right) \leq \frac{1}{\lambda^p}\int_E |f|^p dx.$$

9. Let $E \subset \mathbb{R}^n$ with $m(E) < \infty$ and let $f : E \longrightarrow \overline{\mathbb{R}}$ be such that f is measurable. The aim of this exercise is to prove that $\lim_{n \to \infty} ||f||_p = ||f||_{\infty}$.

- Case $||f||_{\infty} = \infty$. Show that in this case $||f||_p = \infty$ for all $p \ge 1$. Hint: You can use Exercise 8.
- Case $||f||_{\infty} = 0$. Show that in this case $||f||_p = 0$ for all p.
- Case $||f||_{\infty} = C$ with $0 < C < \infty$. (1) Show that $||f||_p^p \le C^p m(E)$ and deduce that $\limsup_{p \to \infty} ||f||_p \le C$. (2) Let $\epsilon > 0$ and $A_{\epsilon} = \{x \in E, |f(x)| \ge C - \epsilon\}$. Show that $||f||_p^p \ge (C - \epsilon)^p m(A_{\epsilon})$

and deduce that $\liminf_{p \to \infty} ||f||_p \ge C - \epsilon$ (3) Deduce that $\lim_{p \to \infty} ||f||_p = C.$

10. The aim of this problem is to establish a generalized of Hölder inequality. More precisely, given a measurable set $E \subset \mathbb{R}^k$, positive numbers p_1, \dots, p_n, r such that

$$\frac{1}{r} = \frac{1}{p_1} + \cdots + \frac{1}{p_n},$$

and functions $f_1 \in L^{p_1}(E), \dots f_n \in L^{p_n}(E)$, then

$$f = f_1 f_2 \cdots f_n \in L^r(E)$$
 and $||f||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \cdots ||f_n||_{p_n}$

• Let p, q and r be positive numbers such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Show that

$$\frac{t}{r} \leq \frac{t^{p/r}}{p} + \frac{1}{q} \qquad \forall t \geq 0 \,.$$

• Show that

$$\frac{(ab)^r}{r} \le \frac{a^p}{p} + \frac{b^q}{q} \qquad \forall \ a, b \ge 0 \,.$$

Hint: Use the previous inequality with $t = a^r b^{r-q}$.

- Let $f \in L^p(E)$, $g \in L^q(E)$ and r such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Show that $fg \in L^r(E)$ and $||fg||_r \le ||f||_p ||g||_q$.
- *Hint:* Let $F = \frac{f}{||f||_p}$ and $G = \frac{g}{||g||_p}$. Use the previous inequality with a = F and b = G. • Use induction to establish the generalized Hölder inequality.

11. Let $p, q \in (0, \infty]$ with p < q and let E be a measurable subset of \mathbb{R}^n .

• Show that if $m(E) < \infty$, then $L^q(E) \subsetneq L^p(E)$ and

$$||f||_p \leq m(E)^{\frac{1}{p} - \frac{1}{q}} ||f||_q \qquad \forall f \in L^q(E)$$

Hint: Apply the generalized Hölder inequality to f and χ_E .

• Show that if $E = \mathbb{R}^n$, then $L^q(E) \nsubseteq L^p(E)$ and $L^p(E) \nsubseteq L^q(E)$. Hint: Consider $f(x) = |x|^{\alpha}$.

12. The aim of this problem is to show (by contradiction) that for a measurable function $\phi : \mathbb{R}^n \longrightarrow \overline{\mathbb{R}}$ and for $1 \leq p < \infty$, if $f\phi \in L^p(\mathbb{R}^n)$ for all $f \in L^p(\mathbb{R}^n)$, then $\phi \in L^\infty(\mathbb{R}^n)$.

- Suppose that $\phi \notin L^{\in}(\mathbb{R}^n)$. Show that for there exists a strictly increasing sequence $\{k_j\}_{j=1}^{\infty}$ in \mathbb{N} , such that for every $j \in \mathbb{N}$, the set $E_j = \{x \in \mathbb{R}^n; k_j \leq |\phi(x)| < k_{j+1}\}$ has a positive measure.
- Define a function $f : \mathbb{R}^n \longrightarrow \overline{\mathbb{R}}$ by $f = \sum_{j=1}^{\infty} c_j \chi_{E_j}$ where the c_j 's are positive numbers. Show that

$$\int_{\mathbb{R}^n} |f\phi|^p dx \ge \sum_{j=1}^\infty k_j^p c_j^p \mathbf{m}(E_j) \,.$$

• Show that for an appropriate choice the coefficients c_j , we have $f \in L^p(\mathbb{R}^n)$ and $f \phi \notin L^p(\mathbb{R}^n)$.