Fall 2022 - Real Analysis Homework 13

1. Let $C^0(\mathbb{R}^n)$ be the space of continuous functions on \mathbb{R}^n and $C^0_c(\mathbb{R}^n)$ be the space of continuous functions with compact support. That is,

$$C^0_c(\mathbb{R}^n) = \left\{ f \in C^0(\mathbb{R}^n), \ \exists R > 0, \ f(x) = 0 \ \forall x, \ |x| > R \right\} \,.$$

The goal of this problem is to show that $C_c^0(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for a given $1 \leq p < \infty$. For this we will use the following Theorem known as Urysohn's Lemma (it holds in more general topological spaces but for this problem, the \mathbb{R}^n -version is enough).

Urysohn's Lemma: Let A and B be closed and disjoint subsets of \mathbb{R}^n . Then there exists a continuous function $f: \mathbb{R}^n \longrightarrow [0, 1]$ such that

$$f(x) = 0 \quad \forall x \in A \quad and \quad f(x) = 1 \quad \forall x \in B.$$

- Let $E \subset \mathbb{R}^n$ be bounded and measurable. Show that for every $\epsilon > 0$, there exists $f \in C_c^0(\mathbb{R}^n)$ such that $\|f - \chi_E\|_p < \epsilon$. Hint: Since E is measurable then for every $\eta > 0$, there exists $F \subset E \subset U$, with F a closed set, U an open set, and $m(U \setminus F) < \eta$.
- Let $E \subset \mathbb{R}^n$ be measurable with finite measure. Show that for every $\epsilon > 0$, there exists $f \in C_c^0(\mathbb{R}^n)$ such that $\|f - \chi_E\|_p < \epsilon$.
- Let ϕ be a simple function in $L^p(\mathbb{R}^n)$. Show that for every $\epsilon > 0$, there exists $f \in C^0_c(\mathbb{R}^n)$ such that $\|f - \phi\|_p < \epsilon.$
- Show $C_c^p(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $1 \le p < \infty$.

2. Let $E \subset \mathbb{R}^n$ be measurable and $1 \leq p < q < \infty$. For every $j \in \mathbb{N}$, let $f_j \in L^p(E) \cap L^q(E)$. Suppose that $f_j \longrightarrow f$ in $L^p(E)$ and $f_j \longrightarrow g$ in $L^q(E)$. Show that f = g a.e. in E. Hint: Consider first the case E with finite measure.

3. Let $a \in \mathbb{R}$. Define the operator T_a acting on functions defined on \mathbb{R}^n by $T_a f(x) = f(x-a)$. Let $1 \le p < \infty$. Show that

$$\lim_{a \to 0} ||T_a f - f||_p = 0 \qquad \forall f \in L^p(\mathbb{R}^n).$$

Hint: You can use the density of continuous functions in L^p .

4. Let [a, b] be a closed and bounded interval in \mathbb{R} and let P the space of all polynomials of one variable $x \in \mathbb{R}$. Show that P is dense in $L^p([a, b])$ for $1 \le p < \infty$. Is P dense in $L^{\infty}([a, b])$? Hint: You can use the following result:

Stone-Weierstrass Theorem: Let $f \in C^0([a, b])$. Then there exists a sequence of polynomials $\{p_n\}_n$ of one variable in \mathbb{R} such that $p_n \longrightarrow f$ uniformly on [a, b].

5. Let $E \subset \mathbb{R}^n$ be measurable and $1 \leq p < \infty$. A series $\sum_{j=1}^{\infty} f_j$ is said to be absolutely convergent in $L^p(E)$ if

 $f_j \in L^p(E)$ for all j and $\sum_{i=1}^{\infty} ||f_j||_p < \infty$. Suppose $\sum_{i=1}^{\infty} f_j$ is absolutely convergent in $L^p(E)$. Prove the following.

- The series ∑_{j=1}[∞] f_j(x) converges a.e. in E to a function f;
 f ∈ L^p(E);

• The series $f = \sum_{j=1}^{\infty} f_j$ converges in L^p . That is

$$\lim_{r \to \infty} \left\| f - \sum_{j=1}^r f_j \right\|_p = 0.$$

• Show that for p = 1 we also have

$$\int_E \sum_{j=1}^\infty f_j \, dx = \sum_{j=1}^\infty \int_E f_j \, dx \, .$$

6. Let $E \subset \mathbb{R}^n$ be measurable and $1 \leq p < q < \infty$. Prove the followings.

- $\mathbf{2}$
- The function $\|.\|: X = L^p(E) \cap L^q(E) \longrightarrow [0, \infty)$ given by $\|f\| = \|f\|_p + \|f\|_q$ is a norm and that $(X, \|.\|)$ is a Banach space.
- If $1 \le p < r < q < \infty$, then $L^p(E) \cap L^q(E) \subset L^r(E)$ and if σ is such that $\frac{1}{r} = \frac{\sigma}{p} + \frac{1 \sigma}{q}$, then $\|f\|_r \le \|f\|_p^{\sigma} \|f\|_q^{1 \sigma} \quad \forall f \in L^p(E) \cap L^q(E)$.

7. Let $1 \leq p \leq \infty$. Suppose a function $f \in L^p(\mathbb{R})$ satisfies

$$\int_{\mathbb{R}} f \phi \, dx = 0 \qquad \forall \phi \in C_c^0(\mathbb{R}) \,,$$

where $C_c^0(\mathbb{R})$ is the space of continuous functions with compact support. Prove that f = 0 a.e. in \mathbb{R} .