Fall 2022 - Real Analysis Homework 2

1. We call an extended real number $a \in \overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$ a cluster point of a sequence $\left\{a_{n}\right\}$ if a subsequence converges to this extended real number a. Show that $\lim \inf \left\{a_{n}\right\}$ is the smallest cluster point of $\left\{a_{n}\right\}$ and $\lim \sup \left\{a_{n}\right\}$ is the largest cluster point of $\left\{a_{n}\right\}$.
2. Show that a sequence $\left\{a_{n}\right\}$ is convergent to an extended real number if and only if there is exactly one extended real number that is a cluster point of the sequence.
3. Show that $\lim \inf \left\{a_{n}\right\} \leq \lim \sup \left\{a_{n}\right\}$.
4. Prove that if, for all $n, a_{n}>0$ and $b_{n} \geq 0$, then $\limsup \left[a_{n} \cdot b_{n}\right] \leq\left(\limsup a_{n}\right) \cdot\left(\limsup b_{n}\right)$, provided the product on the right is not of the form $0 \cdot \infty$.
5. Show that every real sequence has a monotone subsequence. Use this to provide another proof of the Bolzano-Weierstrass Theorem.
6. Let p be a natural number greater than 1 , and x a real number, $0<x<1$. Show that there is a sequence $\left\{a_{n}\right\}$ of integers with $0 \leq a_{n}<p$ for each n such that $x=\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ and that this sequence is unique except when x is of the form $\frac{q}{p^{n}}$ for some $q \in \mathbb{N}$ and $q<p^{n}$, in which case there are exactly two such sequences. Show that, conversely, if $\left\{a_{n}\right\}$ is any sequence of integers with $0 \leq a_{n}<p$ for all n, the series $\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ converges to a real number x with $0 \leq x \leq 1$. If $p=10$, this sequence is called the decimal expansion of x. For $p=2$ it is called the binary expansion; and for $p=3$, the ternary expansion.
7. Let E be a closed set of real numbers and f a real-valued function that is defined and continuous on E. Show that there is a function g defined and continuous on all of \mathbb{R} such that $f(x)=g(x)$ for each $x \in E$. (Hint: Take g to be linear on each of the intervals of which $\mathbb{R} \backslash E$ is composed.)
8. Define the real-valued function f on \mathbb{R} by setting $f(x)=\left\{\begin{array}{ll}x & \text { if } x \notin \mathbb{Q} \\ p \sin \frac{1}{q} & \text { if } x=\frac{p}{q}\end{array}\right.$ in lowest terms

At what points is f continuous?
Hints. You can use the followings
(1) You can start by proving that if $x \in \mathbb{R}^{+} \backslash \mathbb{Q}$, then for every $A>0$, there exists $\delta>0$ such that for every rational number $r=p / q$ (with $p, q \in \mathbb{Z}^{+}$) we have $q>A$.
(2) $|\sin x|<x \quad \forall x \in \mathbb{R}$
(3) $|\sin x-x|<\frac{x^{3}}{6} \quad \forall x \in \mathbb{R}$
9. Let f and g be continuous real-valued functions with a common domain E.
(1) Show that the sum, $f+g$, and product, $f g$, are also continuous functions.
(2) If h is a continuous function with image contained in E, show that the composition $f \circ h$ is continuous.
(3) Let $\max \{f, g\}$ be the function defined by $\max \{f, g\}(x)=\max \{f(x), g(x)\}$, for $x \in E$. Show that $\max \{f, g\}$ is continuous.
(4) Show that $|f|$ is continuous.
10. Show that a Lipschitz function is uniformly continuous but there are uniformly continuous functions that are not Lipschitz.
11. A continuous function ϕ on $[a, b]$ is called piecewise linear provided there is a partition $a=x_{0}<x_{1}<$ $\cdots<x_{n}=b$ of $[a, b]$ for which ϕ is linear on each interval $\left[x_{i}, x_{i+1}\right]$. Let f be a continuous function on $[a, b]$ and ϵ a positive number. Show that there is a piecewise linear function ϕ on $[a, b]$ with $|f(x)-\phi(x)|<\epsilon$ for all $x \in[a, b]$.
12. Show that a nonempty set E of real numbers is closed and bounded if and only if every continuous real-valued function on E takes a maximum value.
13. Show that a set E of real numbers is closed and bounded if and only if every open cover of E has a finite subcover.
14. Show that a nonempty set E of real numbers is an interval if and only if every continuous real-valued function on E has an interval as its image.
15. Show that a monotone function on an open interval is continuous if and only if its image is an interval.
16. Let f be a real-valued function defined on \mathbb{R}. Show that the set of points at which f is continuous is a G_{δ} set.
17. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions defined on \mathbb{R}. Show that the set of points x at which the sequence $\left\{f_{n}(x)\right\}$ converges to a real number is the intersection of a countable collection of F_{σ} sets.
18. Let f be a continuous real-valued function on \mathbb{R}. Show that the inverse image with respect to f of an open set is open, of a closed set is closed, and of a Borel set is Borel.
19. A sequence $\left\{f_{n}\right\}$ of real-valued functions defined on a set E is said to converge uniformly on E to a function f if given $\epsilon>0$, there is an N such that for all $x \in E$ and all $n \geq N$, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions defined on a set E. Prove that if $\left\{f_{n}\right\}$ converges uniformly to f on E, then f is continuous on E.

