Fall 2022 - Real Analysis Homework 3

1. Let *m* be a set function defined for all sets in a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume *m* is countably additive over countable disjoint collections of sets in \mathcal{A}

- (1) Prove that if A and B are two sets in \mathcal{A} with $A \subset B$, then $m(A) \leq m(B)$. This property is called monotonicity.
- (2) Prove that if there is a set A in the collection \mathcal{A} for which $m(A) < \infty$, then $m(\emptyset) = 0$.
- (3) Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of sets in \mathcal{A} . Prove that $m\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m(E_k)$.

2. A set function c, defined on all subsets of \mathbb{R} , is defined as follows. Define c(E) to be ∞ if E has infinitely many members and c(E) to be equal to the number of elements in E if E is finite; define $c(\emptyset) = 0$. Show that c is a countably additive and translation invariant set function. This set function is called the counting measure.

3. Let A be the set of irrational numbers in the interval [0, 1). Prove that $m^*(A) = 1$.

4. A set of real numbers is said to be a G_{δ} set provided it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a G_{δ} set G for which $E \subset G$ and $m^*(G) = m^*(E)$.

5. Let B be the set of rational numbers in the interval [0,1], and let $\{I_k\}_{k=1}^n$ be a finite collection of open intervals that $\sum_{k=1}^n m^*(I_k) > 1$

intervals that covers *B*. Prove that
$$\sum_{j=1}^{n} m^*(I_j) \ge 1$$
.

6. Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.

7. Let A and B be bounded sets for which there is an $\alpha > 0$ such that $|a - b| \ge \alpha$ for all $a \in A$, $b \in B$. Prove that $m^*(A \cup B) = m^*(A) + m^*(B)$.

8. Prove that if a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals.

9. Show that every interval is a Borel set.

- 10. Show that:
 - (1) The translate of an F_{σ} set is also F_{σ}
 - (2) The translate of a G_{δ} set is also G_{δ}
 - (3) The translate of a set of measure zero also has measure zero.

11. Show that if a set E has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

12. Show that if E has finite measure and $\epsilon > 0$, then E is the disjoint union of a finite number of measurable sets, each of which has measure at most ϵ .

13. Show that a set E is measurable if and only if for each $\epsilon > 0$, there is a closed set F and open set U for which $F \subset E \subset U$ and $m^*(U \setminus F) < \epsilon$.

14. Let *E* have finite measure. Show that there is an F_{σ} set *F* and a G_{δ} set *G* such that $F \subset E \subset G$ and $m^*(F) = m^*(E) = m^*(G)$.

15. Let *E* have finite outer measure. Show that if *E* is not measurable, then there is an open set *U* containing *E* that has finite outer measure and for which $m^*(U \setminus E) > m^*(U) - m^*(E)$.

Hint. You can use the fact that a set A is measurable if and only if for every $\epsilon > 0$, there exists an open set $U \supset A$ such that $m^*(U \setminus A) < \epsilon$.

16. (Lebesgue) Let $E \subset \mathbb{R}$ have finite outer measure. Show that E is measurable if and only if for each open, bounded interval $(a, b), b - a = m^* ((a, b) \cap E) + m^* ((a, b) \cap E^c)$.