Fall 2022-Real Analysis Homework 4

1. (a) Show that rational equivalence defines an equivalence relation on any subset of \mathbb{R}.
(b) Explicitly find a choice set for the rational equivalence relation on \mathbb{Q}.
(c) Define two numbers to be irrationally equivalent provided their difference is irrational. Is this an equivalence relation on \mathbb{R} ? Is this an equivalence relation on \mathbb{Q} ?
2. Show that any choice set for the rational equivalence relation on a set of positive outer measure must be uncountably infinite.
3. Let E be a nonmeasurable set of finite outer measure. Show that there is a G_{δ} set G that contains E for which $m^{*}(E)=m^{*}(G)$ while $m^{*}(G \backslash E)>0$.
4. Show that there is a continuous, strictly increasing function on the interval [0,1$]$ that maps a set of positive measure onto a set of measure zero.
5. Let f be an increasing function on the open interval I. For $x_{0} \in I$ show that f is continuous at x_{0} if and only if there are sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in I such that for each $n, a_{n}<x_{0}<b_{n}$, and $\lim _{n \rightarrow \infty}\left(f\left(b_{n}\right)-f\left(a_{n}\right)\right)=0$.
6. Show that if f is any increasing function on $[0,1]$ that agrees with the Cantor-Lebesgue function ϕ on the complement of the Cantor set, then $f=\phi$ on all of $(0,1)$.
7. Let f be a continuous function defined on E. Is it true that $f^{-1}(A)$ is always measurable if A is measurable?
8. Let the function $f:[a, b] \longrightarrow \mathbb{R}$ be Lipschitz, that is, there is a constant $c \geq 0$ such that for all $u, v \in[a, b]$, $|f(u)-f(v)| \leq c|u-v|$. Show that f maps a set of measure zero onto a set of measure zero. Show that f maps an F_{σ} set onto an F_{σ} set. Conclude that f maps a measurable set to a measurable set.
9. Let F be the subset of $[0,1]$ constructed in the same manner as the Cantor set except that each of the intervals removed at the nth deletion stage has length $\alpha 3^{-n}$ with $0<\alpha<1$. Show that F is a closed set, $[0,1] \backslash F$ dense in $[0,1]$, and $m(F)=1-\alpha$. Such a set F is called a generalized Cantor set.
10. Show that there is an open set of real numbers that, contrary to intuition, has a boundary of positive measure. (Hint: Consider the complement of the generalized Cantor set of the preceding problem.)
11. A nonempty subset $X \subset \mathbb{R}$ is called perfect if it has no isolated points (or equivalently if it is closed and each open interval containing any point in X contains infinitely many points of X). Show that the Cantor set is perfect. (Hint: The endpoints of all of the subintervals occurring in the Cantor construction belong to C.)
12. Prove that every perfect set $X \subset \mathbb{R}$ is uncountable. (Hint: If X is countable, construct a descending sequence of bounded, closed subsets of X whose intersection is empty.)
13. A subset A of \mathbb{R} is said to be nowhere dense in \mathbb{R} provided that every open set U has an open subset that is disjoint from A. Show that the Cantor set is nowhere dense in \mathbb{R}.
14. Show that a strictly increasing function that is defined on an interval has a continuous inverse.
15. Let f be a continuous function and B be a Borel set. Show that $f^{-1}(B)$ is a Borel set. (Hint: The collection of sets E for which $f^{-1}(E)$ is Borel is a σ-algebra containing the open sets.)
16. Use the preceding two problems to show that a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets.
