Fall 2022 - Real Analysis Homework 4

1. (a) Show that rational equivalence defines an equivalence relation on any subset of \mathbb{R} .

(b) Explicitly find a choice set for the rational equivalence relation on \mathbb{Q} .

(c) Define two numbers to be irrationally equivalent provided their difference is irrational. Is this an equivalence relation on \mathbb{R} ? Is this an equivalence relation on \mathbb{Q} ?

2. Show that any choice set for the rational equivalence relation on a set of positive outer measure must be uncountably infinite.

3. Let *E* be a nonmeasurable set of finite outer measure. Show that there is a G_{δ} set *G* that contains *E* for which $m^*(E) = m^*(G)$ while $m^*(G \setminus E) > 0$.

4. Show that there is a continuous, strictly increasing function on the interval [0, 1] that maps a set of positive measure onto a set of measure zero.

5. Let f be an increasing function on the open interval I. For $x_0 \in I$ show that f is continuous at x_0 if and only if there are sequences $\{a_n\}$ and $\{b_n\}$ in I such that for each n, $a_n < x_0 < b_n$, and $\lim_{n\to\infty} (f(b_n) - f(a_n)) = 0$.

6. Show that if f is any increasing function on [0, 1] that agrees with the Cantor-Lebesgue function ϕ on the complement of the Cantor set, then $f = \phi$ on all of (0, 1).

7. Let f be a continuous function defined on E. Is it true that $f^{-1}(A)$ is always measurable if A is measurable?

8. Let the function $f : [a, b] \longrightarrow \mathbb{R}$ be Lipschitz, that is, there is a constant $c \ge 0$ such that for all $u, v \in [a, b]$, $|f(u) - f(v)| \le c |u - v|$. Show that f maps a set of measure zero onto a set of measure zero. Show that f maps an F_{σ} set onto an F_{σ} set. Conclude that f maps a measurable set to a measurable set.

9. Let F be the subset of [0, 1] constructed in the same manner as the Cantor set except that each of the intervals removed at the *n*th deletion stage has length $\alpha 3^{-n}$ with $0 < \alpha < 1$. Show that F is a closed set, $[0, 1]\setminus F$ dense in [0, 1], and $m(F) = 1 - \alpha$. Such a set F is called a generalized Cantor set.

10. Show that there is an open set of real numbers that, contrary to intuition, has a boundary of positive measure. (*Hint: Consider the complement of the generalized Cantor set of the preceding problem.*)

11. A nonempty subset $X \subset \mathbb{R}$ is called perfect if it has no isolated points (or equivalently if it is closed and each open interval containing any point in X contains infinitely many points of X). Show that the Cantor set is perfect. (*Hint: The endpoints of all of the subintervals occurring in the Cantor construction belong to* C.)

12. Prove that every perfect set $X \subset \mathbb{R}$ is uncountable. (*Hint: If* X *is countable, construct a descending sequence of bounded, closed subsets of* X *whose intersection is empty.*)

13. A subset A of \mathbb{R} is said to be nowhere dense in \mathbb{R} provided that every open set U has an open subset that is disjoint from A. Show that the Cantor set is nowhere dense in \mathbb{R} .

14. Show that a strictly increasing function that is defined on an interval has a continuous inverse.

15. Let f be a continuous function and B be a Borel set. Show that $f^{-1}(B)$ is a Borel set. (*Hint: The collection of sets E for which* $f^{-1}(E)$ *is Borel is a* σ *-algebra containing the open sets.*)

16. Use the preceding two problems to show that a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets.