Fall 2022 - Real Analysis Homework 5

1. Suppose f and g are continuous functions on an open set $U \subset \mathbb{R}^{n}$. Show that if $f=g$ a.e. on U then, in fact, $f=g$ on U. Is a similar assertion true if the open set U is replaced by a general measurable set E ?
2. Let D and E be measurable sets and f a function with domain $D \cup E$. We proved that f is measurable on $D \cup E$ if and only if its restrictions to D and E are measurable. Is the same true if "measurable" is replaced by "continuous"?
3. Suppose a function f has a measurable domain and is continuous except at a finite number of points. Is f necessarily measurable?
4. (a) Suppose f is a real-valued function on \mathbb{R} such that $\{f>r\}$ is measurable for each rational number r. Is f necessarily measurable?
(b) Suppose f is a real-valued function on \mathbb{R} such that $f^{-1}(c)$ is measurable for each real number c. Is f necessarily measurable?
5. Let the function f be defined on a measurable set E. Show that f is measurable if and only if for each Borel set $A, f^{-1}(A)$ is measurable. (Hint: The collection of sets A that have the property that $f^{-1}(A)$ is measurable is σ-algebra.)
6. (Borel measurability) A function f is said to be Borel measurable provided its domain E is a Borel set and for each $c \in \mathbb{R}$, the set $\{x \in E: f(x)>c\}$ is a Borel set. Verify that Proposition 1 and Theorem 6 remain valid if we replace "(Lebesgue) measurable set" by "'Borel set." Show that:
(1) Every Borel measurable function is Lebesgue measurable.
(2) If f is Borel measurable and B is a Borel set, then $f^{-1}(B)$ is a Borel set.
(3) If f and g are Borel measurable, so is $f \circ g$.
(4) If f is Borel measurable and g is Lebesgue measurable, then $f \circ g$ is Lebesgue measurable.
7. Suppose f and g are real-valued functions defined on all of \mathbb{R}, f is measurable, and g is continuous. Is the composition $f \circ g$ necessarily measurable?
8. Let f be a measurable function and g be a one-to-one function from \mathbb{R} onto \mathbb{R} which has a Lipschitz inverse. Show that the composition $f \circ g$ is measurable (Hint. You can start by proving that a Lipschitz function maps a set of measure 0 to a set of measure 0 and an F_{σ} set to an F_{σ} set and deduce that it maps a measurable set to a measurable set).
9. Show that if $E \subset \mathbb{R}$ is measurable and $f: E \longrightarrow \mathbb{R}$ is monotone increasing on E, then f is measurable.
10. Let f be a bounded measurable function on a set E. Show that there are sequences of simple functions on $E,\left\{\phi_{n}\right\}_{n}$ and $\left\{\psi_{n}\right\}_{n}$, such that $\left\{\phi_{n}\right\}_{n}$ is increasing and $\left\{\psi_{n}\right\}_{n}$ is decreasing and each of these sequences converges to f uniformly on E.
11. Let f be a measurable function on E that is finite a.e.on E and $m(E)<\infty$. For each $\epsilon>0$, show that there is a measurable set F contained in E such that f is bounded on F and $m(E \backslash F)<\epsilon$.
12. Let f be a measurable function on E that is finite a.e. on E and $m(E)<\infty$. Show that for each $\epsilon>0$, there is a measurable set F contained in E and a sequence $\left\{\phi_{n}\right\}_{n}$ of simple functions on E such that $\phi_{n} \longrightarrow f$ uniformly on F and $m(E \backslash F)<\epsilon$. (Hint: See the preceding problem.)
13. Show that the sum and product of two simple functions are simple as are the max and the min.
14. Let A and B be any sets. Show that

$$
\chi_{A \cap B}=\chi_{A} \cdot \chi_{B}, \quad \chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B}, \quad \chi_{A^{c}}=1-\chi_{A}
$$

15. (Dini's Theorem) Let $\left\{f_{n}\right\}_{n}$ be an increasing sequence of continuous functions on the interval $[a, b]$ which converges pointwise on $[a, b]$ to the continuous function f on $[a, b]$. Show that the convergence is uniform on $[a, b]$. (Hint: Let $\epsilon>0$. For each natural number n, define $E_{n}=\left\{x \in[a, b]:\left|f(x)-f_{n}(x)\right|<\epsilon\right\}$. Show that $\left\{E_{n}\right\}_{n}$ is a (relatively) open cover of $[a, b]$ and use the Heine-Borel Theorem.)
16. Let I be an interval in \mathbb{R} and $f: I \longrightarrow \mathbb{R}$ be increasing. Show that f is measurable by first showing that, for each natural number n, the strictly increasing function $f(x)=f(x)+\frac{x}{n}$ is measurable, and then taking pointwise limits
