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Discuss a class of planar vector fields in R2 that have
analogous properties as those of ∂.

Hölder solvability:

∂u = f , f ∈ Lp, p > 2 ⇒ u ∈ Cα, α =
p − 2

p

Integral representation: u =
−1
π

∫
Ω

f (ζ

ζ − z
dξdη + H(z)

Similarity Principle: ∂u = Au + Bu ⇒ u(z) = H(z)es(z)

Boundary value problem (RH):
∂u = Au + Bu + f in Ω , Re(λu) = φ on ∂Ω.
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Necessary and Sufficient condition for local solvability given by
Nirenberg-Treves Condition (P)
For nonsingular planar vector fields L. We can find local
coordinates such that

L = m(x , t)
(
∂

∂t
− ib(x , t)

∂

∂x

)
with b an R-valued function. Condition (P) just means that for
every x , the function t −→ b(x , t) does not change sign.

Example.
∂

∂t
− ixntm ∂

∂x
with m ∈ Z+ satisfies (P) iff m is even.
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If L satisfies (P), then it is locally integrable.
Given point p, there is U open p ∈ U and Z : U −→ C such
that

LZ = 0 and dZ 6= 0 in U

In fact we can assume

Z (x , t) = x + iφ(x , t)

L = m
(

(1 + iφx )
∂

∂x
− iφt

∂

∂t

)
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We know if L satisfies (P) and has C∞ coefficients, then L is
solvable in C∞ category:

Lu = f has C∞ solutions if f ∈ C∞ .

An old result of Treves gives L2-solvability. There is
Lp-solvability in 2 variables under only Lipschitz regularity of
coefficients of L [Hounie-Morales Melo] (97)

Lu = f has Lp solutions if f ∈ Lp .

Example.
∂

∂t
− ix

∂

∂x
satisfies (P) with first integral Z = xeit .

However Lu = 0 has singular solutions. For instance
u = ln|x |+ it .
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In order to gain regularity of solutions, it is necessary to
assume that L does not have 1-dimensional orbits.
Assume that L is hypocomplex. L satisfies (P) and the local first
integrals are homeomorphisms.

Example.
∂

∂t
− ix

∂

∂x
is not hypocomplex.

∂

∂t
− 3it2 ∂

∂x
is hypocomplex since its first integral Z = x + it3 is

global homeomorphism.
Hypocomplexity is not enough.
Example. [Berhanu-Cordaro-Hounie].

L =
∂

∂t
− i
(

1
t2 exp

−1
|t |

)
∂

∂x
, Z (x , t) = x + i

|t |
t

exp
−1
|t |

.

L is a C∞ hypocomplex vector field with first integral Z . Let

S = {(x , t) : |Z (x , t)| < 1/2, 0 < arg(Z (x , t)) < π/4 } .

For f = characteristic function of S, the equation Lu = f has no
bounded solutions.
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Łojasiewicz type condition

Given L, let Σ be the characteristic set of L

Σ = {p : Lp ∧ Lp = 0}

L satisfies the Łojasiewicz type condition (LC) if for every
p ∈ Σ, L has a local first integral Z = x + iφ(x , t) (with
Z (p) = 0) defined in an open set p ∈ U ⊂ R2such that Z is a
homeomorphism and satisfyies

|φ(x , t)|σ ≤ C|φt (x , t)|

for some C > 0 and σ ∈ (0, 1).
Remark. The (LC) condition is invariant under change of
coordinates or choice of a local first integral.
Remark. If Σ is 1-dimensional manifold, then the (LC) condition
can be written as

dis(Z (m),Z (Σ))σ ≤ C|Im(ZxZ y )| .
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Example. If L is of uniform finite type n along Σ, then L satisfies
(LC) with σ =

n
n + 1

.

Example. The vector field

L =
∂

∂t
− i
(

1
t2 exp

−1
|t |

)
∂

∂x

does not satisfy (LC) since

lim
t→0

t2 exp
1− σ
|t |

=∞ if σ < 1 .
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Example. If φ(x , t) is homogeneous of degree λ+ 1 and
φt (x , t) > 0 for (x , t) 6= (0,0),then the vector field associated
with Z = x + iφ(x , t) satisfies (LC) with σ = λ/λ+ 1.
In polar coordinates

φ(r , θ) = rλ+1Q(θ) φt (r , θ) = rλP(θ)

with P(θ) > 0 ∀θ ∈ [0, 2π]. Thus

|φ(r , θ)|
λ

λ+1 ≤ C|φt (r , θ)|
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Suppose that L is a vector field defined in an open set Ω′ ⊂ R2

s.t.
L is hypocomplex;
The characteristics Σ is 1-dimensional manifold;
L satisfies (LC)
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Remark. L hypocomplex ⇒ L has a global first integral in Ω′.
We can assume that there exist

Z : Ω′ −→ Z (Ω′) ⊂ C

a C1 homeomorphism, such that

LZ = 0 and dZ (p) 6= ∀p ∈ Ω′ .

We can assume that

L = Zx
∂

∂y
− Zy

∂

∂x
.

Let Ω ⊂⊂ Ω′, Σ =
∑N

j=1 Σj . For each j let σj be the exponent of
the (LC) on Σj . Let σ = maxσj .
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Cauchy-Pompeiu operator

For f ∈ L1(Ω) define

TZ f (x , y) =
1

2πi

∫
Ω

f (ξ, η) dξdη
Z (ξ, η)− Z (x , y)

.
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Theorem ([C. Campana, P. Dattori, A.M.])

If f ∈ Lp(Ω) with p > 2 + σ, then ∃M = M(p, σ,Ω) such that

|TZ f (x , y)| ≤ M ||f ||p , ∀(x , y) ∈ Ω .

If f ∈ L1(Ω), then TZ f (x , y) ∈ Lq(Ω) for any
1 < q < 2− σ

σ + 1
.
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Idea of the proof

Special case: Z = x + i
y |y |σ

σ + 1
If f ∈ Lp with p > 2 + σ

|TZ f (x , y)| ≤
||f ||p
π

(∫
Ω

dξ dη
|Z (ξ, η)− Z (x , y)|q

) 1
q

=
||f ||p
π

J
1
q

with q =
p

p − 1
. Note that q < 2− τ , τ =

σ

σ + 1
let

s = ξ = ReZ , t =
η|η|σ

1 + σ
= ImZ .

J = (1+σ)
1

σ+1

∫
Z (Ω)

ds dt
|t |τ |ζ − z|q

≤ (1+σ)
1

σ+1

∫
D(z,R)

ds dt
|t |τ |ζ − z|q

with ζ = s + it , z = Z (x , y) and R is the diameter of Z (Ω).
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Lemma ∫
D(z,R)

ds dt
|t |τ |ζ − z|q

≤ M(q)
R2−q−τ

2− q − τ

This lemma together with the above estimate proves the special
case. The general case can be brought into the special case by
writing

J =

∫
Ω′

dξ dη
|Z (ξ, η)− Z (x , y)|q

+
N∑
j

∫
Vj

dξ dη
|Z (ξ, η)− Z (x , y)|q

with Vj tubular neighborhood of Σj and Ω′ = Ω\
⋃N

j=1 Vj . L is
elliptic in Ω′ and L can be transformed into the special case in
each Vj with exponent σj .
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|Z (ξ, η)− Z (x , y)|q

+
N∑
j

∫
Vj

dξ dη
|Z (ξ, η)− Z (x , y)|q

with Vj tubular neighborhood of Σj and Ω′ = Ω\
⋃N

j=1 Vj . L is
elliptic in Ω′ and L can be transformed into the special case in
each Vj with exponent σj .
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Let f ∈ L1(Ω). Let g ∈ Lp(Ω) with p > 2 + σ, then part (1)
implies that

g1(x , y) =

∫
Ω

|g(ξ, η)|dξ dη
|Z (ξ, η)− Z (x , y)|

∈ L∞(Ω) and g1f ∈ L1(Ω) .

Then ∫
Ω

fg1dxdy =

∫
Ω
|g(ξ, η)|

∫
Ω

|f (x , y)| dxdy
|Z (x , y)− Z (ξ, η)|

dξdη

So∫
Ω

|f (x , y)| dxdy
|Z (x , y)− Z (ξ, η)|

∈ Lq(Ω) and TZ f (x , y) ∈ Lq(Ω)
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Theorem ([C. Campana, P. Dattori, A.M.])

If f ∈ L1(Ω), then LTZ f (x , y) = f

The proof is consequence of

Proposition

If w ∈ C0(Ω) ∩ C1(Ω), then

w(x , y) =
1

2πi

∫
∂Ω

w(ξ, η)

Z (ξ, η)− Z (x , y)
dZ (ξ, η)

− 1
π

∫
Ω

Lw(ξ, η)

Z (ξ, η)− Z (x , y)
dξdη .
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Proof of Theorem

Let φ ∈ D(Ω).

< LTZ f (x , y), φ > = − < TZ f (x , y),Lφ >

=

∫
Ω

f (ξ, η)

(
−1
π

∫
Ω

Lφ(x , y)

Z (x , y)− Z (ξ, η)
dxdy

)
dξdη

=< f , φ > .
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Remark. f ∈ Lp with p > 2 + σ is optimal for obtaining bounded
solutions.
For the standard vector field

∂

∂y
− i |y |σ ∂

∂x
and

f (x , y) =
−i |y |σ

Z (x , y) ln |Z (x , y)|
∈ Lp(R2) for any p < 2 + σ

but f /∈ Lp′
with p′ > 2 + σ. The function

u(x , y) = ln |ln Z (x , y)| /∈ L∞ and satisfies Lu = f . Equation
Lu = f has no bounded solutions.
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Hölder continuity

Theorem ([C. Campana, P. Dattori, A.M.])

If f ∈ Lp(Ω) with p > 2 + σ, and Lu = f , then u ∈ Cα(Ω) with

α =
2− q − τ

q

The proof uses the lemma

Lemma ([C. Campana, P. Dattori, A.M.])
For z1 6= z0 and τ < 1, we have∫

D(0,R)

dξ dη
|η|τ |ζ − z1|q |ζ − z0|q

≤ C(p, τ) |z1 − z0|2−2q−2τ
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Proof of Theorem

Set z1 = Z (x1, y1) and z0 = Z (x0, y0).

|TZ f (x1, y1)− TZ f (x0, y0)| ≤ |z1 − z0|
π

∫
Ω

|f (ξ, η)|dξdη
|Z (ξ, η)− z1| |Z (ξ, η)− z0|

≤
||f ||p
π
|z1 − z0|H

1
q

with
H =

∫
Ω

dξdη
|Z (ξ, η)− z1|q |Z (ξ, η)− z0|q

Case Z (x , y) = x +
y |y |σ

σ + 1
. Let R > 0 s.t. Z (Ω) ⊂ D(0,R) and

s = ξ, t =
y |y |σ

σ + 1
It follows from the lemma that
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H ≤ 1
(1 + σ)τ

∫
D(0,R)

ds dt
|t |τ |ζ − z1|q |ζ − z0|q

≤ C(q, τ)|z1 − z0|2−2q−τ

and

|TZ f (x1, y1)− TZ f (x0, y0)| ≤
||f ||p
π
|z1−z0|H

1
q ≤ C(p, τ)|z1−z0|α

with α =
2− q − τ

q
.

The general case can be reduced to this special case as was
done previously.
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Semilinear Equation

The regularity of solutions of uy = f (x , y ,u,ux ) was studied by
many authors using the FBI transform. Including: [Adwan,
Berhanu](2012); [Asano] (1995);
[Baouendi-Goulaouic-Treves](1985); [Berhanu] (2009), [Lerner,
Morimoto, Xu] (2008). The last chapter of Treves book
"Hypo-analytic Structures" deals with nonlinear structures.
However, in all these works, the function f (x , y , ζ0, ζ1) is
assumed to be holomorphic in (ζ0, ζ1).
A paper by Hounie and Santiago (1996) considers the equation
Lu = f (x ,u) with L satisfies (P). They prove in particular
existence of Lp solutions if f ∈ Lp.
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Let F (x , y , ζ) be a function defined on Ω× C such that
For every ζ ∈ C, F (., ζ) ∈ Lp(Ω) with p > 2 + σ;
There exists ψ(x , y) ∈ Lp(Ω) and β ∈ (0, 1] s.t.

|F (x , y , ζ1)− F (x , y , ζ0)| ≤ ψ(x , y) |ζ1 − ζ0|β
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Semilinear equation

Theorem ([C. Campana, P. Dattori, A.M.])

Let F (x , y ,u) be as above, α =
2− q − τ

q
, τ =

σ

σ + 1
. Then

If β < 1, equation Lu = F (x , y ,u) has a solution in Cα(Ω);
If β = 1, then for every (x , y) ∈ Ω, there is an open
neighborhood U ⊂ Ω such that equation Lu = F (x , y ,u)
has a solution u ∈ Cα(U) .
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Proof

For N > 0, let

CN(Ω) = {u ∈ C(Ω); ||u||∞ ≤ N}

Let M(p, σ,Ω) found earlier such that

||TZ f ||∞ ≤ M(p, σ,Ω)||f ||p ∀f ∈ Lp(Ω), p > 2 + σ

Case β < 1. Let N be large enough so that

M(p, σ,Ω)
(
||ψ||pNβ + ||F (.,0)||p

)
≤ N .
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Let P : CN(Ω) −→ CN(Ω):

Pu(x , y) = TZ F (x , y ,u(x , y)) .

P is well defined since

|Pu(x , y)| ≤ M(p, σ,Ω)||F (x , y ,u)||p
≤ M(p, σ,Ω) (||F (x , y ,u)− F (x , y ,0)||p + ||F (x , y ,0)||p)

≤ M(p, σ,Ω)
(
||ψ||pNβ + ||F (x , y ,0)||p

)
≤ N

Also the continuity of Pu follows from that of the integral
operator TZ F :

|Pu(m1)− Pu(m0)| ≤ C(p, σ,Ω)||F (.,u)||p |Z (m1)− Z (m0)|α

≤ C(p, σ,Ω)N |Z (m1)− Z (m0)|α
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Let C = C(p, σ,Ω)
(
||ψ||pNβ + ||F (.,0)||p

)
. and

ΛN,C = {u ∈ CN(Ω) : |u(m1)− u(m0)| ≤ C |Z (m1)− Z (m0)|α} .

ΛN,C is a convex subset of CN(Ω) and compact (Ascoli-Arzela).
We have P(CN(Ω)) ⊂ ΛN,C and

|Pu(m)− Pv(m)| = |TZ F (m,u)− TZ F (m, v)|
≤ M(p, σ,Ω)||F (.,u)− F (., v)||p
≤ M(p, σ,Ω)||ψ||p||u − v ||β∞

P : ΛN,C −→ ΛN,C is continuous. By Schauder fixed point
theorem, there is u ∈ ΛN,C satisfying u = Pu .Thus
Lu = LTZ F (x , y ,u) = F (x , y ,u)
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