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Similarity Principle for ∂

Theorem
Let A, B ∈ Lp(Ω) with p > 2. If w solves

∂w
∂z

= Aw + Bw , (0.1)

then there exist a holomorphic function h in Ω and s ∈ Cα(Ω),

with α =
p − 2

p
such that

u(z) = h(z)es(z) . (0.2)

Conversely, for any given holomorphic function h in Ω, there
exists a Hölder continuous function s ∈ Cα(Ω) such that u
given by (2) satisfies (1)
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Similarity principle for vector fields with degeneracy was
considered in [A. M] (1997) for some model vector fields.

In 2000, Berhanu-Hounie-Santiago generalized a weak version
of the principle to vector fields satisfying condition P.They used
the result to show uniqueness of the Cauchy problem for vector
fields.

For the class of vector under consideration. We prove a strong
version of the principle.
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Recall: Z : Ω −→ Z (Ω) ⊂ C is a C1 homeomorphism,

Σ = {p ∈ Ω : Im(ZxZ y )(p) = 0}

is a C1 1-dimensional submanifold of Ω.
Near each point p of Σ, there are coordinates such that

Z (x , t) = x + iφ(x , t)

and |φ(x , t)− φ(x ,0)|τ ≤ C |φt (x , t)| with τ < 1 and C > 0.

L = Zx (x , y)
∂

∂y
− Zy (x , y)

∂

∂x

TZ f (x , y) =
1

2πi

∫
Ω

f (ξ, η) dξdη
Z (ξ, η)− Z (x , y)
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If f ∈ Lp(Ω), with p > 2 + σ, then

||TZ f ||∞ ≤ C(p, σ,Ω)||f ||p ;

LTZ f = f

|TZ f (p)− TZ f (q)| ≤ C(p, σ,Ω)||f ||p |Z (p)− Z (q)|α

with α =
2− q − τ

q
.
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A semilinear equation

Let G(x , y , ζ) ∈ C0(Ω× C) ∩ L∞(Ω× C).

Theorem (C. Campana, P. Dattori, A.M)

Let G be as above and A, B ∈ Lp(Ω) with p > 2 + σ. Then,
equation

Lu = A(x , y) + B(x , y)G(x , y ,u)

has a solution u ∈ Cα(Ω) .
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Proof

Let P : C0(Ω) −→ C0(Ω) given by

Pu(x , y) = TZ (A(x , y) + B(x , y)G(x , y ,u)) .

Since A(x , y) + B(x , y)G(x , y ,u) ∈ Lp(Ω), then

||Pu||∞ ≤ M(p, σ,Ω)||A + BG||p
≤ M(||A||p + ||G||∞||B||p) = D

and

|Pu(m1)− Pu(m2)| ≤ |TZ (A + BG)(m1)− TZ (A + BG)(m2)|
≤ C (||A||p + ||G||∞||B||p) |Z (m1)− Z (m2)|α
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Let E = C(||A||p + ||G||∞||B||p) and ΛD,E be the set of function
v ∈ C0(Ω) such that

||v ||∞ ≤ D and |v(m1)− v(m2)| ≤ E |Z (m1)− Z (m2)|α

Then P(ΛD,E ) ⊂ ΛD,E and P is a continuous operator:Since G is
uniformly continuous on the compact

Ω× {ζ ∈ C; |ζ| ≤ D}

then for ε > 0, there is δ > 0, s.t.

|G(m, ζ1)−G(m, ζ2)| ≤ ε

M(||B||p + 1)
for |ζ1 − ζ2| ≤ δ
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Hence for u, v ∈ ΛD,E and ||u − v ||∞ < δ

||Pu − Pv ||∞ = ||TZ (B(G(u)−G(v)))||∞
≤ M ||B(G(u)−G(v))||p
≤ M||B||p ||G(u)−G(v)||∞

≤
M ||B||p

M(||B||p + 1)
ε ≤ ε

Shauder Fixed Point Theorem implies that P has a fixed point u
in ΛD,E and so

Lu = A(x , y) + B(x , y)G(x , y ,u)
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Similarity Principle

Theorem (C. Campana, P. Dattori, A.M)

Let a, b ∈,Lp(Ω) with p > 2 + σ.
If u ∈ L∞(Ω) satisfies

Lu = au + bu (0.3)

then there is a holomorphic function H in Z (Ω) ⊂ C and
s ∈ Cα(Ω) such that

u(x , y) = H(Z (x , y))es(x ,y) (0.4)

If H is a holomorphic function defined in Z (Ω), then there
exists s ∈ Cα(Ω) such that u given by (4) satisfies (3)
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Second order elliptic equations with degeneracies

P = A
∂2

∂x2 + 2B
∂2

∂x∂y
+ C

∂2

∂y2 + D
∂

∂x
+ E

∂

∂y

For simplicity, assume that the coefficients are real analytic.
Suppose that AC − B2 ≥ 0 and A = 1. The degeneracy set
{C − B2 = 0} is then an analytic variety of dimension 1.Let

L = ∂x + β∂y , with β = B + iS = B + i
√

C − B2

Then
Pu = LLu + MLu + NLu

with

M = i
E − Lβ − βD

2S
, N = i

−E + Lβ + βD
2S
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Set w = Lu. The study of Pu = 0, reduces to
Lw + Mw + Nw = 0.

This idea was used ([A.M] 2010, 2012) to study properties of
solutions of Pu = 0 near isolated singular points or near a
simple closed curve of degeneracy. Also used in the study of
deformation of surfaces
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Bending of surfaces

S ⊂ R3, orientable, C∞ surface with C∞ boundary.

S =
{

R(s, t) ∈ R3 : (s, t) ∈ Ω
}

where R : Ω ⊂ R2 −→ R3 is C∞. Let E , F , G, and e, f , g, be
the coefficients of the first and second fundamental forms:

E = Rs · Rs , F = Rs · Rt , G = Rt · Rt

e = Rss · N , f = Rst · N , g = Rtt · N

with
N =

Rs × Rt

|Rs × Rt |
The Gaussian curvature

K =
eg − f 2

EG − F 2
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An infinitesimal bending of S of class Ck is a deformation
Sσ ⊂ R3, with σ ∈ R3 with position vector

Rσ(s, t) = R(s, t) + σU(s, t)

such that
dR2

σ = dR2 + O(σ2) as σ → 0

This means U : Ω −→ R3 satisfies

dR · dU = 0 .

Trivial bendings given by U(s, t) = A× R(s, t) + B with A and B
constants in R3.

Question. Does S have nontrivial infinitesimal bendings?
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Existence of nontrivial bending fields

Assume K > 0 on Ω except at finitely many planar points
p1, · · · ,pl ∈ Ω.

Theorem ([A.M] (2013))

For every k ∈ Z+, the surface S has nontrivial infinitesimal
bendings U : Ω −→ R3 of class Ck .
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Reduction to solvability of vector fields

The (complex) asymptotic directions are given by

λ2 + 2fλ+ eg = 0 ; λ = −f + i
√

eg − f 2 ∈ R + iR+ .

The vector field

L = g(s, t)
∂

∂s
+ λ(s, t)

∂

∂t

is elliptic in Ω\{p1, · · · ,pl}
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For U : Ω −→ R3 we associate the C-valued function

w(s, t) = LR(s, t) · U(s, t)
= g(s, t)u(s, t) + λ(s, t)v(s, t)

with u = Rs · U and v = Rt · U.

Theorem ([ A.M.] (2013))
If U satisfies dR · dU = 0, then w satisfies

Lw = Aw + Bw

with

A =

(
LR × LR

)
· (L2R × LR)∣∣LR × LR

∣∣2 , B =

(
LR × LR

)
· (L2R × LR)∣∣LR × LR

∣∣2
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Solvability of Lw = Aw + Bw

First find a global first integral of L

Proposition ([ A.M.] (2013))

There exists Z : Ω −→ Z (Ω) ⊂ C homeomorphism
Z ∈ C∞(Ω\{p1, · · · ,pl})
For every j, there is µj > 0 and local polar coordinates
(r , θ) centered at pj such that

Z (r , θ) = Z (0,0) + rµj eiθ + O(r2µj )

LZ = 0 on Ω

Use the first integral to convert into a Bers-Vekua type equation
with singular points
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∂W
∂Z

=
P(Z )∏l

j=1(Z − Zj)
W +

Q(Z )∏l
j=1(Z − Zj)

W

with w = W ◦ Z , and P, Q are C∞ outside the singular points
and bounded near the singular points.
Such equation has nontrivial continuous solutions that are C∞

outside the singular points.
We can get solution with any regularity by seeking
W (Z ) = H(Z )W1(Z ) with H(Z ) =

∏l
j=1(Z − Zj)

M . The function
W1 solves

∂W1

∂Z
=

P(Z )∏l
j=1(Z − Zj)

W1 +
Q(Z )∏l

j=1(Z − Zj)

H
H

W

For given k ∈ Z+, we can make W of class Ck at the Zj ’s by
taking M large enough.
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Once we have w = gu + λv , we get

v =
w − w

2i
√

eg − f 2
, u =

w + w + 2fv
2g

and then the bending field U from

Rss · U = us , Rtt · U = vt and 2Rst · U = ut + vs
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Theorem ([ A.M.] (2013))

Let S be as before.Then for every ε > 0 and for every k ∈ Z+,
there exist surfaces Σ+ and Σ− of class Ck in the
ε-neighborhood of S (for the Ck topology)such that Σ+ and Σ−

are isometric but not congruent.

Proof. Let Σσ and Σ−σ be surfaces defined by

R±σ(s, t) = R(s, t)± σU(s, t)

with U an infinitesimal bending of S.

dR · dU = 0 =⇒ dR2
±σ = dR2 + σ2dU2

Hence Σσ and Σ−σ are isometric. For σ small enough Σ± are in
an ε-neighborhood of S.
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The Riemann-Hilbert Problem

Original Riemann Problem: Find a holomorphic function
h = u + iv in a domain Ω ⊂ C such that

α(t)u(t) + β(t)v(t) = γ(t) t ∈ ∂Ω

where α , β , γ are given continuous R-valued function on ∂Ω.

Hilbert reduced it into finding holomorphic functions Φ+ and Φ−

in interior and exterior of Ω such that

Φ+ − g(t)Φ− = f on ∂Ω.

Can be solved in closed form using Cauchy type integrals

Φ(z) =
1

2πi

∫
∂Ω

φ(t)
z − t

dt

(φ related to f and g) (Plemlj and Gakhov).
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Riemann-Hilbert type problems:

∂w
∂z

= Aw + Bw in Ω

Re (λu) = φ on ∂Ω

Many problems can be reduced into solving RH problems.

Elasticity; Airfold theory; Helmholtz Equation; Radon Transform;
Inverse Scattering; ...
Literature:

Begehr (1994): Complex Analytic methods for PDE
Gakhov (1966): Boundary value problems
Muskhelishvili (1977): Singular Integral Equations
Rodin (1987): Generalized Analytic Functions on Riemann
Surfaces
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RH problem for vector fields

L complex vector field in R2 Ω is simply connected with smooth
boundary

Lu = F (x , y ,u) in Ω

Re(λu) = φ on ∂Ω

For hypocomplex vector fields satisfying (LC) condition, the
problem can be solved using the integral operator TZ f .
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Schwarz formula: If h(z) ∈ C(D) is holomorphic in the unit disc
D then

h(z) =
1

2πi

∫
∂D

Reh(ζ)
ζ + z
ζ − z

dζ
ζ

+ i Im(h(0)) .

Let Z : Ω −→ D be C1 first integral of L and a
homeomorphism. For φ ∈ C(∂Ω,R), define

S(φ(x , y)) =
1

2πi

∫
∂Ω
φ(ξ, η)

Z (ξ, η) + Z (x , y)

Z (ξ, η)− Z (x , y)

dZ (ξ, η)

Z (ξ, η)
+ ic

(c ∈ R).Then

L(S(φ)) = 0 in Ω and Re (Sφ) = φ on ∂Ω
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Define the operator

TZ f (x , y) =
1

2πi

∫
Ω

(
f (ξ, η)

Z (ξ, η)− Z (x , y)
+

Z (x , y)f (ξ, η)

1− Z (x , y)Z (ξ, η)

)
dξdη

Then TZ f ∈ Cα(Ω) and for f ∈ Lp(Ω) with p > 2 + σ, we have

LTZ f = f in Ω and Re (TZ f ) = 0 on ∂Ω
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For the RH problem

Lw = F (x , y ,w) in Ω and Re(w) = φ on ∂Ω

with
φ ∈ C(∂Ω,R);
F : Ω× C −→ C such that F (., ζ) ∈ Lp (p > 2 + σ)
|F (p, ζ1)− F (p, ζ2)| ≤ ψ(p)|ζ1 − ζ2|β (0 < β < 1).

we associate the operator

Qw = TZ F (x , y ,w) + Sφ .

We can show that Q has a fixed point in Cα that satisfies the
above RH problem
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