lll. Obstructions to Solvability

Hamid Meziani

Florida International University

Geometric Analysis of PDE and Several Complex Variables,
Serra Negra, SP, Brazil, 2015



§1

Recall: Classical problem

Problem. Given )\ : 9D — 0D, Holder continuous,



§1

Recall: Classical problem

Problem. Given )\ : 0D — 90D, Hoélder continuous, find
w € C(D) holomorphic in D



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.

The problem has nontrivial solutions only when the index « of A
is > 0.



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.

The problem has nontrivial solutions only when the index « of A
is > 0.

w(z) = z"e(?) (/do + Z dz - d 21)

j=1



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.

The problem has nontrivial solutions only when the index « of A
is > 0.

; — 1
— aiv(2) J _ A
w(z) = z"e (/d0+121dz dz)
with dy € R, 0 € C,



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.

The problem has nontrivial solutions only when the index « of A
is > 0.

: — 1
— aiv(2) J _ .
w(z) = z"e (/d0+121dz dz)
with ap € R, d; € C, and 7(2) = S(arg(z7"\(2)))



§1

Recall: Classical problem

Problem. Given )\ : oD — 0D, Holder (:i)ntinuous, find
w € C(D) holomorphic in D such that Re(A w) = 0 on ID.

The problem has nontrivial solutions only when the index « of A
is > 0.

w(z) = z"e(?) (/do + Z dz - d 21)

j=1
with ap € R, d; € C, and 7(2) = S(arg(z7"\(2)))

1 C+ d¢




L= Aé% + Baay’ locally solvable, nonsingular, C¥, in §~2, open

subset of R2.



L= Aé% + Baay’ locally solvable, nonsingular, C¥, in §~2, open
subset of R2.

Allow L to have one dimensional orbits.



L= Aé% + Baay’ locally solvable, nonsingular, C¥, in §~2, open
subset of R2.
Allow L to have one dimensional orbits.

QccQ



L= Aé% + Baay’ locally solvable, nonsingular, C¥, in §~2, open
subset of R2.
Allow L to have one dimensional orbits.

Q cc Q, Q simply connected.



0 0 _ L=
L= Aa + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R2.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.

A 0Q — 0D, Holder continuous.



0 0 . T
L= Aa—x + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R2.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.
A 02 — 0D, Holder continuous.

Problem 1. Lu=0in Q, and Re (Au) = 0 on 9.



0 0 _ L=
L= Aa + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R2.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.
A :0Q — 0D, Hoélder continuous.
Problem 1. Lu=0in Q, and Re (Au) = 0 on 9.

Problem 2. Lu=0in Q, and Re (Au) = ¢ on 0X.



0 0 _ L=
L= Aa—x + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R?.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.
A :0Q — 0D, Hblder continuous.
Problem 1. Lu=0in Q, and Re (Au) = 0 on 9.
Problem 2. Lu=0in Q, and Re (A u) = ¢ on 9Q.with

¢ € C*(0Q,R).



0 0 _ L=
L= Aa + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R?.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.
A 9Q — 0D, Hoélder continuous.
Problem 1. Lu=0in Q, and Re (Au) = 0 on 9.
Problem 2. Lu=0in Q, and Re (A u) = ¢ on 9Q.with
¢ € C*(0Q,R).
Problem 3. Lu = fin Q, and Re (Au) = 0 on 9.



0 0 _ L=
L= Aa + Ba—y, locally solvable, nonsingular, C“, in £, open
subset of R?.
Allow L to have one dimensional orbits.
Q cc Q, Q simply connected.
A 9Q — 0D, Hoélder continuous.
Problem 1. Lu=0in Q, and Re (Au) = 0 on 9.
Problem 2. Lu=0in Q, and Re (A u) = ¢ on 9Q.with
¢ € C*(0Q,R).
Problem 3. Lu = fin Q, and Re (A u) = 0 on 9Q.with
¢ € C*(0Q,R) and f € C<(Q).



For simplicity, assume that L has no closed one dimensional
orbits.



For simplicity, assume that L has no closed one dimensional
orbits.

Each one dimensional orbit is a curve [’} joining two distinct
points on 912.



For simplicity, assume that L has no closed one dimensional

orbits.
Each one dimensional orbit is a curve [’} joining two distinct

points on 912.

N
Q\Urj:Q1U---UQN+1
j=1



For simplicity, assume that L has no closed one dimensional
orbits.

Each one dimensional orbit is a curve [’} joining two distinct
points on 912.

N
Q\Urj:Q1U---UQN+1

j=1
O = Ay UTj1 UAp UTjpU---UAjm, U Ty,



For simplicity, assume that L has no closed one dimensional

orbits.
Each one dimensional orbit is a curve [’} joining two distinct

points on 912.

N
Q\Urj:Q1U---UQN+1

j=1
aﬂj = Aj1 U rj1 U Aj2 U I_/'2 U---u Ajmj U rjmf
Aj arc of 0%2;



For simplicity, assume that L has no closed one dimensional

orbits.
Each one dimensional orbit is a curve [’} joining two distinct

points on 912.

N
Q\Urj:Q1U---UQN+1

j=1
0Q =A1UTjjUARUTl U o U Ajmj. U I',-mj.
Aj arc of 9Q2; Ty one dimensional orbit.



For simplicity, assume that L has no closed one dimensional

orbits.
Each one dimensional orbit is a curve [’} joining two distinct

points on 912.

N
Q\Urj:Q1U---UQN+1

j=1
0Q =A1UTjjUARUTl U o U Ajmj. U I',-mj.
Aj arc of 9Q2; Ty one dimensional orbit.



Associate indices to A € C%(022, 0D)



Associate indices to A € C%(022, 0D)
To each connected component €2;, associate and ; € Z.



Associate indices to A € C%(022, 0D)
To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;;):



Associate indices to A € C%(022, 0D)

To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;;):

Oj = arg N(Py ) — arg A(Py).



Associate indices to A € C%(022, 0D)

To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;,;):

Oj = arg N(Py ) — arg A(Py).

Pk Pk
Qi = [;] €Z, O‘jk:?/_qjk € [0, 1).



Associate indices to A € C%(022, 0D)

To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;,;):

Oj = arg N(Py ) — arg A(Py).

Pk Pk
Qi = [;] €Z, O‘jk:?/_qjk € [0, 1).

n; = # of orbits on 0; with g odd.



Associate indices to A € C%(022, 0D)
To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;,;):
Oj = arg N(Py ) — arg A(Py).
_ |k _ Yk
ik = [71-] €7, a/k—7—q/k € [0, 1).

= # of orbits on 99, with gj odd.

Define



Associate indices to A € C%(022, 0D)

To each connected component €2;, associate and «; € Z.
Jump of A along orbit 'y = arc(pj;,p;,;):

Oj = arg N(Py ) — arg A(Py).

Pk Pk
Qi = [;] €Z, O‘jk:?/_qjk € [0, 1).

= # of orbits on 99, with gj odd.

Define

d; = # of orbits with ajx = 0.
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n
w=adx+uw =dx+ Z aj(x, t)dt.
j=1
9 0

b=y gk =1
AX) = ANPO(X) = {fe NP(X): F=3 f(x,t)at).

-, n.

lJ|=p
L: APO(X) — APHIO(X), L=d—u' A ;(
ofy o(j,M)
Lf=>" dhy — 2w | Adity = S Do (=) UMLy, | dty
|J|=p IM|=p+1 \jeM

from now on we assume w exact
w = d(x + i¢(x, 1))

with ¢ € £™1 and R-valued.
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characterizing #(x, t) for which H2(£+1) is trivial. That is

Equation ILu = f can be solved with u € AP=19(£"+1) for
every f € APO(EM1) satisfying Lf = 0
He conjectured that the triviality of H>(£7t") is equivalent the
triviality of (p — 1) homology group of the generic fiber of
X+ ip(x,t).
The completed proof of the conjecture was given by Cordaro
and Hounie in 2001.
Some articles that were written about the problem include
Cordaro-Treves (1991): " =" for all p
Mendoza-Treves (1991): " <" forp =1
Chanillo-Treves (1997): " <" for all p when w is real analytic.
Cordaro-Hounie (1999): " <—"forp=n
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Mizohata type:

w=d(x +ig(t)), q(t):t12+--~+t,§—t,§+1—~~-t,§

ldeas in [A.M] 1997 can used for w = d(x + i¢(t)) where ¢ € E"
has an algebraically isolated singularity at 0 € R".
Let L = |¢|~"(c) with ¢ > 0 small. Then

HO(EM) =2 HP-1(L)® S
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Ideas in the proof

@ Reduction to flatness along the separatrix R x V with
V =¢71(0):

HE(E™) = HE(Fo(R x V)

@ Reduction to wedge
HP(Fo(R x V) = &l HP(Co(W)))

where Wy, --- | Wy are components of R”i\]R x V and
Co(W;) is the space of germs at 0 of C>°(W;) that are flat
along W, n R x V.

@ HP(Co(W))) = HP-1(L)) ® Swhere Lj = LN W,.
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Proof

To n = fdZ + gdz € N'(C*>(R2) associate [f] € S.

Since the general solution of uz =finy > 0 is

u(z) = up(z) — h(z), with h holomorphic in y > 0 and smooth
uptoy >0and

_ =1 [ 1(©) -
UO(Z)_Z’]T//éC—ZdC/\dC
then in order for u to be flat along y = 0 we need up(x) = h(x).

®: Hyopi)(Fo({y =0}) — S, o([n]) = [f]

is an isomorphism.
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Cohomology with formal coefficients

F(x,t,8) = x+i(o(t) + 8).

Ex: germs at 0 € R of C* functions

Ex|t, s]: ring of formal power series in t, s with coefficients in &.
. A*(Exlt, 8])

Noe(Ex|t =
(&t o) = K= [t s]) 1 oF

Proposition
HO:(&x[t, 8]) = & and HE(Ext, s]) = 0 for p > 0.




Reduction to flatness along x-axis

Proposition

w = d(x +i¢(t)). Ifn € ZB(EMT), then there exists
u € AP~1(&™1) such that

n—du € Zf(Fo({t = 0}))
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dnAw=0 = dn=mn1 Aw for some n; € NP(E™1)
dPn=dpAw=0 = dn; = Aw for some np € AP(EM)
The continuation gives rise to a (Godbillion-Vey) sequence
{nj}j € AP(E™T) with dnj = nj1 Aw. (setn = ).

Let o be the formal p-form in (x, ¢, s):

/
04—277/ jl

/>0

so that da = (Z N1 ’S)j) A dF.
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Tinj = antr and Ttsoz—z / '
J,r

with nf = 77 (x) € AP(&x).

danNdF =0 = Tisa € Zz,_-(é’x[l‘, s])

so (from previous proposition) 33 € AP=1(&x[t, 8]) such that
(T.soe — dB) A dF = 0.

Let 3 € AP—1(EM2) s.t. T;s8 = 3 (Borel).

Let B9 and n = ng be the pullbacks of 5 and « to s = 0. Then
Ti(n — dBo) Nd(x +ip(t)) = 0. i.e.

n—dpfo € Z{(Fo({t=0})).
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Theorem of C.A. Roche

o(t) € £Mis R-valued with an algebraically isolated singularity
at 0.

S ={xeR": |x|=¢}
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Theorem (C. A. Roche 1985)
For e > 0 small enough, there exists § > 0 s.t.
e S js transversal to hypersurfaces ¢~ (t) for |t| < 6.
@ V. is homeomorphic to a cone with vertex 0 and base
V.nSh1.
@ The restriction of |¢| to U\ V. is a fibration with base (0, ¢)
and fiber Y s
@ |¢|: Us\Ve — (0, 9) has a C™ trivialization
V: Us5\Ve — Yes5 x (0, 6) such that V* induces an
isomorphism between F (Y, s x {0})A*(C®(Yes x (=0, 0)))
and F(V )N (C>®(U.s)
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M: smooth manifold of dimension m
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Complex on product manifold

M: smooth manifold of dimension m

Rt(e,6) ={(x,y) €R?: |x| <¢, 0< y <6}

Y={(p,x,y) e M x R(¢,0): y =0}

F(Y): germs of flat functions along Y in C>°(M x Rt (e, 4)).
. _ A (F(Y))

Noorin PO = K vy nd(xt )

Proposition
HO(F(Y)) = HP-Y(M) x S




Proof

n=n"+n"Adz mod(dz): p-form on M x RT (e, §)



Proof

n=n"+n"Adz mod(dz): p-form on M x R*(e,§) with °
and ', p and (p — 1) forms on M depending on parameter z.



Proof

n=n"+n"Adz mod(dz): p-form on M x R*(e,§) with °
and ', p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1)Pn2) A dZ mod(dz)



Proof

n=n"+n"AdZ mod(dz): p-formon M x R (e, ) with °
and 1!, p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1)Pnd) A dZ mod(dz)

If n is dz-closed,



Proof

n=n"+n"AdZ mod(dz): p-formon M x R (e, ) with °
and 1!, p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1)Pnd) A dZ mod(dz)

If  is dz-closed, then dor® = 0 and dyn' + (—1)Pn2 = 0.



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and n', p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1 )png) Adz mod(dz)

If 1 is dz-closed, then don® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C*(M)): generators of HP(M)



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and 1!, p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1 )png) Adz mod(dz)

If 1 is dz-closed, then don® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C*(M)): generators of HP(M)

n° =" “(2)o, + dpa with f and « flat along y = 0.



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and n', pand (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1 )png) Adz mod(dz)

If ) is dz-closed, then dpn® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C>(M)): generators of HP(M)

n° = > (2)o, + doa with f and « flat along y = 0. so
do(n' + (=1)Paz) + (1P L o, =0



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and ', p and (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1 )png) Adz mod(dz)

If ) is dz-closed, then dpn® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C>(M)): generators of HP(M)

n° = > (2)o, + doa with f and « flat along y = 0. so
a(n' + (—1)Paz) + (—1)P S #o, =0 and = 0.



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and 1!, p and (p — 1) forms on M depending on parameter z.
dn = cor® + (con' + (—1)Pn2) Adz  mod(dz)

If ) is dz-closed, then dpn® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C>(M)): generators of HP(M)

n° = > (2)o, + doa with f and « flat along y = 0. so
a(n' + (—1)Paz) + (—1)P 32 #o, =0 and = 0.
O1,---,0 € NP~1(C>(M)): generators of HP—1(M) .



Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and 1!, p and (p — 1) forms on M depending on parameter z.
dn = cor® + (con' + (—1)Pn2) Adz  mod(dz)

If ) is dz-closed, then dpn® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C>(M)): generators of HP(M)

n° = > (2)o, + doa with f and « flat along y = 0. so
a(n' + (—1)Paz) + (—1)P 32 #o, =0 and = 0.
O1,---,0 € NP~1(C>(M)): generators of HP—1(M) .

N+ (=1)Paz = 3 g"(2)0, + s



Proof
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Proof

n=n"+n"Adz mod(dz): p-formon M x RT(e,§) with 1°
and n', pand (p — 1) forms on M depending on parameter z.
dn = don® + (don' + (—1 )png) Adz mod(dz)

If ) is dz-closed, then dpn® = 0 and don' + (—1)Pn2 = 0.

o1, -+ ,01 € NP(C>(M)): generators of HP(M)

n° = > (2)o, + doa with f and « flat along y = 0. so
do(n' + (—1)Paz) + (—1)P Y #o, = O and ¥ = 0.
O1,---,0 € NP~1(C>(M)): generators of HP—1(M) .

n' 4+ (=1)Paz = 3. g%(2)0, + do3 with g¥ and 3 flat along
y=0.

We get

n=d(a+pAdZ) + > g"(2)0, Adz mod(dz)
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Son € ZE (F(Y)) is dz-cohomologous to 3" gV©, A dZ;
and n € BE,(F(Y)) iff for every v there exists H”(z)
holomorphic in y > 0 and smooth up to y > Osuch that

—1 / gy(C) dC/\ dz _ HV(Z)

ﬁ (CC_Z

is flat along y = 0. i.e. iff [g"] =0 € S.
& HG(F(Y) — HP (M) xS, o([n]) = (©,,[9"])

is an isomorphism.
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Reduction to wedges

Llet W=(-a, a) x U.s C RxR"

WA\R x V=W U---UWy.

L = |¢|~"(8), L; connected component of L such that

(—a, a)x Lj c W.

C5e(W)): space of germs at 0 of C* functions with support

c W,.

Proposition

Forp>1, HS(E™") = o, HP(C(W))
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Proof

Firstif n € ZB(£™"), we can prove that
n=adu+n" mod(w) withn®ec ZB(F(R x V)
° in W

Define n? —{ 0 in RM\W,

son®="> n.
i

Second we prove that 70 € B5(£™1) = 7 € BE(C(W)))
The map [n] — >;[n°] gives an isomorphism

HB(E™") — €D HR(CE (Wh))



Proposition
HO(CR(Wh) = HP (L) x S

Proof. Roche’s Theorem induces an isomorphism

W F((—a, a) x L x 0)A*(C®((—a, a) x L x [0, 4))
— N(Ce"(W))



Proposition
HE(CE (W) = HPT (L)) x S

Proof. Roche’s Theorem induces an isomorphism

W F((—a, a) x L x 0)A*(C®((—a, a) x L x [0, 4))
— N(Ce"(W))

which in turn induces an isomorphism

(F(LixR*(e,0))) = Hy (G (W)

1 ~
HPY(L)xS = H d(x+in(1)

(x+iy)
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