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Theorem (S. Greenfield and N. Wallach (1972))

L is (GH) if and only if \ is not Liouville.
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Zb(T™+"): space of Q-closed p-forms (Lof = 0)
BS‘.’Z(T’"*”): space of Q-exact p-forms (f = Lqu)

HP(Tm+n) — Zg(Tern)
’ BR(Tm )
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Y4, -+ ,¥m closed loops in T such that the homotopy classes
M=A{[v], -, [ym]} is a basis of Hy(T).
To Q@ = {wy,- -+ ,wn}, associate the m x n matrix

MF = (M,Z) where M,Zj = 217 W
Tk

@ If I is another basis of Hy(T™), then M™ = SM" for some
S e SL(m,Z).

M satisfies (DC) < M satisfies (DC)
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G=1(91, - ,9r) € Myz(n,r). If M satisfies (DC), then
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where V : T™ — T' js the linear map given by the matrix
(MG)". In particular if M(Z") N Z™ = {0}, then HA(T™") =0 .
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Proposition

Ho(T™") = Hg, (™)
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Suf=g=">_ 9(t,J)e”* with g(t,J) = e*"O7(t,).
J

Note that [|g(t, J)|| = |[f(t,J)|| and Sy is an isomorphism
S;'=5Sn.
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Claim. Lq = S5, "Lg, Sy
Proof.

Lo, SHf = La,g = Z (d@(t, J) + iz Jkwlg(t, J)) el
dig(t,J) = e H [df (t,J) + /Z/kdhk(t ) A1(t, J)]
Loy Suf = > /ML, (f(t, J)e 'JX)

J
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Claim. Lo = Sy, 'Lq, Sy
Proof.

Lo, SHf = La,g = Z (d@(t, J) + iz jk§al(t, J)) et X
dig(t,J) = e H [df (t,J) + /Z/kdhk(t ) A1(t, J)]
Loy Suf = Y e#HOLg (f(t, J)e 'JX)
S_nlLa, S,.,fJ: 3 Lo (ft, J)e’J'X> = Lof.
J

Consequence

SHZa(T™7) = Z3 (T™") and  SyB(T™") = Ba (T™")
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Conditions for closedness

f e Co(Tm+n, APD),
=" f(t,J)e"™, with f(t,J) € C=(T™, AP).

Jezn
f=3" 3 K. J)e e with
Kezm Jezr
(K. J)= Y (K. Jdu, (K. J)eC

[LI=p

Yvezt, 3C, >0, |[f(K,J)|< VK, J

Cy
(A+IKI+IJD)”

m
L, f = 0 if and only if (Z(k/ +a- J)dt,) N f(K,J) =0 for all
=1
K, J. In particular ¢t f(t, J) is a closed p-form in T™ for every
JeN.
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Condition for exactness

Proposition

Suppose that M satisfies condition (DC). Then f is Qq-exact if

o~

and only if for every J € N, e™/'tf(t, J) is an exact form in T™
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s=1
ForJ € N, ¢M/t ¢ C(T™) and
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"e—" Suppose eMf(t,J) is exact for every J € N.

Let N = Z"\N, fy = Y yen F(t, D)™ fy = 32 F(t ),
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IMJl‘f t, J Z I(K+MJ
K
= f(—MJ,J)+ D £ (K, J)el(KtM)t
K£MJ

eMI1f(t J) exact = f(—MJ,J) =0

We can define uy as

uy = EﬂN(K, J)eiK't i/-x with

inK.J)= |K+€MJ| f(K, J) ditp, with € = +1
|L|=p, c€L

Condition (DC) and f(K, J) with fast decay — uy € C*®
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Proof of HE (T™") 2= HP(T™) ® W*(C>(T"))

fe 2B (T™"), d(e™tF(t,J) =0 VJeN.

eiMJ~t’f(t, J) — Z 05 dt; + exact form
|LI=p

Cl; e C with rapid decay.
Let H: Z" — N < Z" isomorphism. For every L let

gu(s) =D Ch,e™ € C™(T")

vezr
Define ®(f) by

o(f) = > gi(MH) t)dt, € HP(T™) @ W*(C>(T"))
[Ll=p

where W is the linear map given by (MH)T.
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fi ~q, b = ®(f;) = ®(k) (Prop. about exactness).
o HQO(T”’JF”) — HP(T™) @ W*C>(T") injective.

For gu(s) = 3. G(v)e™® € C=(T")

VEL"
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fi ~q, b = ®(f;) = ®(k) (Prop. about exactness).
o HS’;O(’JI‘”’JF”) — HP(T™) @ W*C>(T") injective.
For gu(s) = ) _ 9(v)e™® € C™(T") define
VEL"
fL(t, X) — Z a(_MJ)efiMJ-teiJX e COO(Tern)
JeN

and f = " fL(t, x)dty.



fi ~q, b = ®(f;) = ®(k) (Prop. about exactness).
o HS’;O(’JI‘”’JF”) — HP(T™) @ W*C>(T") injective.
For gu(s) = ) _ 9(v)e™® € C™(T") define
VEL"
fL(t, X) — Z a(_MJ)efiMJ-teiJX e COO(Tern)
JeN

and f = " fL(t, x)dt,. Then o(f) = 3" g, (W(t)) dt;.
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Semiglobal solvability

Solvability of the equation
Lu=f

L is a vector field in a neighborhood of an orbit

@ A necessary and sufficient condition for local solvability is
the Nirenberg-Treves Condition (P)

@ Condition (P) is also sufficient for solvability in a
neighborhood of a nonrelatively compact orbit of L (L.
Hérmander, Ann. Math. 1978, J. Hounie, Proc. AMS,
1985)

@ Solvability in a neighborhood of a relatively compact orbit
not yet well understood.

@ The case of vector in two variables is considered in earlier
works (A.M. (2001) and Cordaro-Gong (2004))

@ There are locally solvable vector fields that are not solvable
near a relatively compact orbits.
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A class of vector fields

Letwi, -, wm €Rand Ay, .-+, Ay €R,
t=(t, - ,tm) €T, x=(Xq,--- ,Xp) € R".

(o + 960t ) 57

Ms

X

k=1

(i + 6(t.x) 2

Y ix

I
.M:

1

~.
Il

where g, i € C(T™ x B(r); R), with a = oo (smooth case) or
a = w (real analytic case) and such that

g =O(lx) and f=0O(|x?)



Notation

X = (w+ 9g(t, x))0; Y = (Ax + f(t, x))Ox



Notation
X = (w+ 9g(t, x))0; Y = (Ax + f(t, x))Ox
where

g:(g17"'7gm) f:(f'lv"'afn)?



Notation
X = (w+ 9g(t, x))0; Y = (Ax + f(t, x))Ox
where

g:(g17"'7gm) f:(f'lv"'afn)?
/\:dlag(A‘la 7)‘ﬂ)



Notation
X = (w+ 9g(t, x))0; Y = (Ax + f(t, x))Ox
where

g:(g17"'7gm) f:(f'lv"'afn)?
/\:dlag()\‘la 7)‘ﬂ)

T T
oo (2 0N (o o
ot Otm O0Xq OXn



Notation
X = (w+ 9g(t, x))0; Y = (Ax + f(t, x))Ox
where

g:(g17"'7gm) f:(f'lv"'afn)?

N = dlag()\‘la T 7)‘ﬂ)
(2 ) (2
ot Otm O0Xq OXn

Let T’ = T™ x {0} ¢ T™ x R”
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Note that since Y = 0 and X = wd; on Tg’, then for every
(t,0) € Tg' the orbit of X through (t,0) is also an orbit of the
real vector X + Y and of the complex vector field X + iY.
These orbits are trapped on the torus Ty

Our objective is to understand the equations

X+Yu=F (real case) and
(X+iY)u=F (complex case)

in a full neighborhood of the torus T¢’
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(Sr): There exists C > 0 and x> 0 such that
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Normalization of X + Y

Theorem

Suppose that (w, \) satisfies (Sg). Then there exists a
diffeomorphism ¢ of class C?@

O(t, x) = (t+ o(t, x), x + (L, x))

defined in a neighborhood of T, with ¢(t,0) = 0, ¥(t,0) = 0,
such that
q)*(X—i- Y) = ij)\ = wot + AXx0x
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Idea of the proof: (C>-case)

Step 1. Formal equivalence
Step 2. Reduction to normalization up to flat terms
Step 3. Removal of flat terms
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Solvability of M,, »

Mw,)\ = w0t + Ax0x

Theorem

Assume that (w, \) € R™ x R" satisfy (Sg). Let f be a
C?-function (a = w or a = oo) in a neighborhood of T such
that

£(t,0)dt = 0.
'Irm




Solvability of M,, »

Mw,)\ = wOt + NxOx

Theorem

Assume that (w, ) € R™ x R" satisfy (Sg). Letf be a

C?-function (a = w or a = oo) in a neighborhood of T such
that

£(t,0)dt = 0.

Tm

Then equation M, yu = f has a C2-solution in a neighborhood
of g
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Normalization of X +iY

We seek a diffeomorphism that transforms
X+1Y = (w+ 9)0: + i(Ax + f)Ox
into

Lw’)\ = w0 + iINXOx

Remark. Note that since wd; and Axdx commute, then a
necessary condition for such an equivalence to exist is that X
and Y need to commute.

[X,Y]=0
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Siegel type condition (S¢)

The pair (w, A) € R™ x R” satisfies the Siegel type condition
(Sc) if the following holds:

(Sc): There exist C > 0 and x> 0 such that

C
<w,K>+<A\Jd> >
| | (1K1 +[J])*

forevery K e Z™, J € N", with |K| + |J| > 0.
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Normalization of X + /Y analytic case

Suppose that
@ (w, \) satisfy (Sc),
@ f and g are real analytic, and
@ [X,Y]=0.
Then there exists a real analytic diffeomorphism

O(t, x) = (t+ o(t, x), x + (t, x))

near Tg' with ¢(t,0) = 0, +(t,0) = 0, such that

O, (X +iY) =L,




Normalization of X 4 iY: C*-case

Suppose that
@ (w, ) satisfy (Sc),




Normalization of X 4 iY: C*-case

Suppose that
@ (w, ) satisfy (Sc),
@ )\{,---,\p have the same sign,




Normalization of X 4 iY: C*-case

Suppose that
@ (w, ) satisfy (Sc),
@ )\{,---,\p have the same sign,
@ fandg are C*, and




Normalization of X 4 iY: C*-case

Suppose that
@ (w, ) satisfy (Sc),
@ )\{,---,\p have the same sign,
@ fandg are C*, and
@ [X,Y]=0.




Normalization of X 4 iY: C*-case

Theorem
Suppose that
@ (w, ) satisfy (Sc),
@ )\{,---,\p have the same sign,
@ fandg are C*, and
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Normalization of X 4 iY: C*-case

Theorem
Suppose that
@ (w, ) satisfy (Sc),
@ )\{,---,\p have the same sign,
@ fandg are C*, and
@ [X,Y]=0.
Then there exists a C> diffeomorphism

o(t, x) = (t+ o(t, x), x + (t, x))

near Tq' with ¢(t,0) = 0, (t,0) = 0, such that

O, (X +iY) = Ly
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A non normalizable vector field

Let (w, A) € R™ x R” with n > 2 such that A\ < 0and X\, > 0.
Let 8(x) € CO(R",R) defined by
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_ )X ifxy >0, X0 >0,
Ax) { 0 elsewhere
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A non normalizable vector field

Let (w, A) € R™ x R” with n > 2 such that A\ < 0and X\, > 0.
Let 8(x) € CO(R",R) defined by
Xoo—XA1
_ )X ifxy >0, X0 >0,
Ax) { 0 elsewhere
Then Ax9x5(x) = 0.
Let a(y) € C(R,R) with a(y) > 0 for y > 0 and a(y) = 0 for
y <0.



A non normalizable vector field

Let (w, A) € R™ x R” with n > 2 such that A\ < 0and X\, > 0.
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A non normalizable vector field

Let (w, A) € R™ x R” with n > 2 such that A\ < 0and X\, > 0.
Let B(x) € CO(R:,]R{) defined by
x2x; M ifxy >0, xo >0,
px) = { 01 : elsewhere
Then Ax9x5(x) = 0.
Let a(y) € C(R,R) with a(y) > 0 for y > 0 and a(y) = 0 for
y <0.
Define g(t, x) € C>*(T™ x R",R™) by

g1(t,x) = a(B(x)), gk(t,x)=0 fork=2,--- ,m.

Note that g is flat along T7’ and Axdxg = 0.



A non normalizable vector field

Consider the vector field

T = (w+g(t, X)) + ifxOx = L\ + oz(B(X));f1



A non normalizable vector field

Consider the vector field

T = (w+g(t, X)) + ifxOx = L\ + oz(B(X));f1

Note that [Re(T), Im(T)] = 0.



A non normalizable vector field

Consider the vector field
0

T = (w+ g(t, X)) + iNxOx = Ly, \ + a(B(X)) ot

Note that [Re(T), Im(T)] = 0.

Proposition

There is no diffeomorphism & near T§' such that

S (T) =Ly




Proof

Suppose there a diffeomorphism

®(t, x) = (t+ (1, x), ¥(t, X))
such that . T =L, ).
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O(t, x) = (t+ o(t, x), (1, x))

suchthat &, T = L, 5. Forj=1,--- ,m, the function ¢;(t, x)
satisfies

m
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In particular for j = 1, the t-periodic function ¢4 satisfies
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Proof

Suppose there a diffeomorphism

O(t, x) = (t+ o(t, x), (1, x))

suchthat &, T = L, 5. Forj=1,--- ,m, the function ¢;(t, x)
satisfies

m
4+ ¢; 99;
§Wk+gk ot +1 Z)\’XIO/ wj

In particular for j = 1, the t-periodic function ¢4 satisfies

wag) 8(: ):—91(X)-
k=1

This equation cannot have a periodic solution unless g; = 0.
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Solvability of L, ,: real analytic case

Loyx = wOr + iNXOy

Assume that (w, \) € R™ x R" satisfy (Sc). Let f be a
C=-function in a neighborhood of T such that

£(t,0)dt = 0.
Tm




Solvability of L, ,: real analytic case

Lo, = wdy + iAXOx

Theorem

Assume that (w, \) € R™ x R" satisfy (Sc). Let f be a
C=-function in a neighborhood of T such that

£(t,0)dt = 0.

Tm

Then equation L, xu = f a unique C”-solution in a
neighborhood of T’
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Assume that (w, ) € R™ x R" satisfy (Sc). Letf be a
C®°-function in a neighborhood of T such that

f(,0)dt = 0.

Tm




Solvability of L, \: smooth case

Theorem

Assume that (w, ) € R™ x R" satisfy (Sc). Letf be a
C®°-function in a neighborhood of T such that

f(,0)dt = 0.
'I[‘m

Then for every k € N, equation L, \u = f has a C*-solution in a
neighborhood of T’
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Assume that (w, ) € R™ x R" satisfy (Sc).




Nonexistence of C*> solutions

Assume that (w, \) € R™ x R" satisfy (Sc). There exists a C*
function f in a neighborhood of T" with f = 0 on T’




Nonexistence of C*> solutions

Assume that (w, \) € R™ x R" satisfy (Sc). There exists a C*
function f in a neighborhood of T with f = 0 on T’ such that

equation L, xu = f has no C* solution in any neighborhood of
Tg'




Thank You
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