NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS AND PROBLEMS IN HIGHER DIMENSIONS

1. Exercises.

In exercises 1 to 7 solve the nonhomogeneous boundary value problems

Exercise 1.

$$
\begin{array}{ll}
u_{t}=u_{x x} & 0<x<\pi, t>0 \\
u(0, t)=1, u(\pi, t)=3 & t>0 \\
u(x, 0)=x & 0<x<\pi
\end{array}
$$

First seek a steady state function $s(x)$ that satisfies the end points conditions. That is $s^{\prime \prime}(x)=0$, $s(0)=1$ and $s(\pi)=3$. We find $s(x)=\frac{2 x}{\pi}+1$.

Now let $v(x, t)=u(x, t)-s(x)$. In order for u to solve the BVP, the function v must solve

$$
\begin{array}{ll}
v_{t}=v_{x x} & 0<x<\pi, t>0 \\
v(0, t)=0, v(\pi, t)=0 & t>0 \\
v(x, 0)=x-s(x)=\frac{\pi-2}{\pi} x-1 & 0<x<\pi
\end{array}
$$

The v-problem can be solved by the method of separation of variables. We find

$$
v(x, t)=-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1+(\pi-3)(-1)^{n}}{n} \mathrm{e}^{-n^{2} t} \sin (n x)
$$

Therefore the solution u is given by

$$
u(x, t)=s(x)+v(x, t)=\frac{2 x}{\pi}+1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1+(\pi-3)(-1)^{n}}{n} \mathrm{e}^{-n^{2} t} \sin (n x)
$$

Exercise 2.

$$
\begin{array}{ll}
u_{t}=u_{x x}+\mathrm{e}^{-x} & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=0 & 0<x<\pi
\end{array}
$$

Exercise 3.

$$
\begin{array}{ll}
u_{t}=u_{x x}-x & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=x & 0<x<\pi
\end{array}
$$

Seek the solution $u(x, t)$ as $u=v+w$ where the functions $v(x, t)$ and $w(x, t)$ are solutions of the BVPs

$$
\left\{\begin{array} { l }
{ v _ { t } (x , t) = v _ { x x } (x , t) } \\
{ v (0 , t) = 0 , v (\pi , t) = 0 } \\
{ v (x , 0) = x }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
w_{t}(x, t)=w_{x x}(x, t)-x \\
w(0, t)=0, w(\pi, t)=0 \\
w(x, 0)=0
\end{array}\right.\right.
$$

The separation of variables gives

$$
v(x, t)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathrm{e}^{-n^{2} t} \sin (n x) .
$$

Date: March, 2021.

To solve the w-problem, we use the eigenfunctions expansion of the SL-problem $X^{\prime \prime}+\lambda X=$ $0, X(0)=X(\pi)=0$. That is, seek $w(x, t)$ as

$$
w(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x) .
$$

where $c_{n}(t)$ are functions of t that need to be determined. Since $x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)$, the w-PDE can be rewritten as

$$
\sum_{n=1}^{\infty} c_{n}^{\prime}(t) \sin (n x)=-\sum_{n=1}^{\infty} n^{2} c_{n}(t) \sin (n x)-2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x) .
$$

The initial condition $w(x, 0)=0$ implies that $c_{n}(0)=0$ for all $n \geq 1$. It follows that for $n \geq 1$, the function $c_{n}(t)$ satisfies the first order linear ODE problem

$$
c_{n}^{\prime}(t)+n^{2} c_{n}(t)=\frac{2(-1)^{n}}{n}, \quad c_{n}(0)=0
$$

We use the method of undetermined coefficients to find

$$
c_{n}(t)=\frac{2(-1)^{n}}{n^{3}}\left(1-\mathrm{e}^{-n^{2} t}\right) .
$$

Therefore

$$
w(x, t)=\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n^{3}}\left(1-\mathrm{e}^{-n^{2} t}\right) \sin (n x)
$$

The solution u is:

$$
\begin{aligned}
u(x, t) & =v(x, t)+w(x, t) \\
& =2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathrm{e}^{-n^{2} t} \sin (n x)+\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n^{3}}\left(1-\mathrm{e}^{-n^{2} t}\right) \sin (n x) \\
& =2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}\left[1-\left(1+n^{2}\right) \mathrm{e}^{-n^{2} t}\right] \sin (n x)
\end{aligned}
$$

Exercise 4.

$$
\begin{array}{ll}
u_{t}=u_{x x}+2 t & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=100 & t>0 \\
u(x, 0)=0 & 0<x<\pi
\end{array}
$$

Exercise 5.

$$
\begin{array}{ll}
u_{t t}=u_{x x}-g & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=0, u_{t}(x, 0)=\sin x & 0<x<\pi
\end{array}
$$

where g is a constant (gravitational for example).
Seek the solution $u(x, t)$ as $u=v+w$ where the functions $v(x, t)$ and $w(x, t)$ are solutions of the BVPs

$$
\left\{\begin{array} { l }
{ v _ { t t } (x , t) = v _ { x x } (x , t) } \\
{ v (0 , t) = 0 , v (\pi , t) = 0 } \\
{ v (x , 0) = 0 , v _ { t } (x , 0) = \operatorname { s i n } x }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
w_{t t}(x, t)=w_{x x}(x, t)-g \\
w(0, t)=0, w(\pi, t)=0 \\
w(x, 0)=0, w_{t}(x, 0)=0
\end{array}\right.\right.
$$

The separation of variables gives

$$
v(x, t)=\sin t \sin x .
$$

To solve the w-problem, we use the eigenfunctions expansion of the SL-problem $X^{\prime \prime}+\lambda X=$ $0, X(0)=X(\pi)=0$. That is, seek $w(x, t)$ as

$$
w(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)
$$

where $c_{n}(t)$ are functions of t that need to be determined. Since $g=\frac{2 g}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin (n x)$, the w-PDE can be rewritten as

$$
\sum_{n=1}^{\infty} c_{n}^{\prime \prime}(t) \sin (n x)=-\sum_{n=1}^{\infty} n^{2} c_{n}(t) \sin (n x)-\frac{2 g}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin (n x)
$$

The initial conditions $w(x, 0)=0$ and $w_{t}(x, 0)=0$ implies that $c_{n}(0)=0$ and $c_{n}^{\prime}(0)=0$ for all $n \geq 1$. It follows that for $n \geq 1$, the function $c_{n}(t)$ satisfies the second order linear ODE problem

$$
c_{n}^{\prime \prime}(t)+n^{2} c_{n}(t)=\frac{2 g\left[(-1)^{n}-1\right]}{\pi n}, \quad c_{n}(0)=0, \quad c_{n}^{\prime}(0)=0 .
$$

We use the method of undetermined coefficients to find

$$
c_{n}(t)=\frac{2 g\left[(-1)^{n}-1\right]}{\pi n^{3}}(1-\cos (n t)) .
$$

Therefore

$$
w(x, t)=\sum_{n=1}^{\infty} \frac{2 g\left[(-1)^{n}-1\right]}{\pi n^{3}}(1-\cos (n t)) \sin (n x) .
$$

The solution u is:

$$
u(x, t)=v(x, t)+w(x, t)=\sin t \sin x+\frac{2 g}{\pi} \sum_{n=1}^{\infty} \frac{\left[(-1)^{n}-1\right]}{n^{3}}(1-\cos (n t)) \sin (n x)
$$

Exercise 6.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+\sin (2 x) & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=\sin x, u_{t}(x, 0)=\sin (3 x) & 0<x<\pi
\end{array}
$$

Exercise 7.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+\sin (2 x) \cos t & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=0, u_{t}(x, 0)=\sin x & 0<x<\pi
\end{array}
$$

Seek the solution $u(x, t)$ as $u=v+w$ where the functions $v(x, t)$ and $w(x, t)$ are solutions of the BVPs

$$
\left\{\begin{array} { l }
{ v _ { t t } (x , t) = v _ { x x } (x , t) } \\
{ v (0 , t) = 0 , v (\pi , t) = 0 } \\
{ v (x , 0) = 0 , v _ { t } (x , 0) = \operatorname { s i n } x }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
w_{t t}(x, t)=w_{x x}(x, t)+\cos t \sin (2 x) \\
w(0, t)=0, w(\pi, t)=0 \\
w(x, 0)=0, w_{t}(x, 0)=0
\end{array}\right.\right.
$$

The separation of variables gives

$$
v(x, t)=\sin t \sin x .
$$

To solve the w-problem, we use the eigenfunctions expansion of the SL-problem $X^{\prime \prime}+\lambda X=$ $0, X(0)=X(\pi)=0$. That is, seek $w(x, t)$ as

$$
w(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)
$$ where $c_{n}(t)$ are functions of t that need to be determined. The w-PDE can be rewritten as

$$
\sum_{n=1}^{\infty} c_{n}^{\prime \prime}(t) \sin (n x)=-\sum_{n=1}^{\infty} n^{2} c_{n}(t) \sin (n x)+\cos t \sin (2 x) .
$$

The initial conditions $w(x, 0)=0$ and $w_{t}(x, 0)=0$ implies that $c_{n}(0)=0$ and $c_{n}^{\prime}(0)=0$ for all $n \geq 1$. It follows that for $n \neq 2$, the function $c_{n}(t)$ satisfies the second order linear ODE problem

$$
\left\{\begin{array}{l}
c_{n}^{\prime \prime}(t)+n^{2} c_{n}(t)=0 \\
c_{n}(0)=0, \quad c_{n}^{\prime}(0)=0
\end{array} \quad \Longrightarrow \quad c_{n}(t)=0\right.
$$

For $n=2, c_{2}(t)$ satisfies the ODE problem

$$
c_{2}^{\prime \prime}(t)+4 c_{2}(t)=\cos t, \quad c_{2}(0)=0, \quad c_{2}^{\prime}(0)=0 .
$$

We use the method of undetermined coefficients to find

$$
c_{2}(t)=\frac{\cos t-\cos (2 t)}{3} .
$$

Therefore

$$
w(x, t)=\frac{\cos t-\cos (2 t)}{3} \sin (2 x) .
$$

The solution u is:

$$
u(x, t)=v(x, t)+w(x, t)=\sin t \sin x+\frac{\cos t-\cos (2 t)}{3} \sin (2 x) .
$$

Exercise 8. The function $f(x, y)$ is doubly periodic with period 2π in x and in y. It is given on $[-\pi, \pi]^{2}$ by $f(x, y)=x y^{2}$. Find the double Fourier series of f.

Exercise 9. Same question as in problem 8 for the function given on $[-\pi, \pi]^{2}$ by $f(x, y)=x^{2} y^{2}$.
The function $f(x, y)$ which is 2π-periodic in x and 2π-periodic in y and defined in the square $[-\pi, \pi]^{2}$ by $f(x, y)=x^{2} y^{2}$ is even in x and even in y. Therefore its double Fourier series has the form

$$
\frac{A_{00}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n, 0} \cos (n x)+\frac{1}{2} \sum_{m=1}^{\infty} A_{0 m} \cos (m y)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cos (n x) \cos (m y)
$$

with

$$
A_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x^{2} y^{2} \cos (n x) \cos (m y) d x d y
$$

We have

$$
A_{00}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x^{2} y^{2} d x d y=\frac{4 \pi^{4}}{9} .
$$

A repeated integration by parts shows that

$$
\int_{0}^{\pi} x^{2} \cos (n x) d x=\left[\frac{x^{2} \sin (n x)}{n}+\frac{2 x \cos (n x)}{n^{2}}-\frac{2 \sin (n x)}{n^{3}}\right]_{0}^{\pi}=\frac{2 \pi(-1)^{n}}{n^{2}} .
$$

It follows that

$$
A_{n, 0}=\frac{8 \pi^{2}(-1)^{n}}{3 n^{2}}, A_{0, m}=\frac{8 \pi^{2}(-1)^{m}}{3 m^{2}}
$$

and for $n, m \geq 1$

$$
A_{n, m}=\frac{16(-1)^{n+m}}{n^{2} m^{2}}
$$

Hence for $-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$, we have

$$
x^{2} y^{2}=\frac{\pi^{4}}{9}+\sum_{n=1}^{\infty} \frac{4 \pi^{2}(-1)^{n}}{3 n^{2}} \cos (n x)+\sum_{m=1}^{\infty} \frac{4 \pi^{2}(-1)^{m}}{3 m^{2}} \cos (m y)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{16(-1)^{n+m}}{n^{2} m^{2}} \cos (n x) \cos (m y) .
$$

Exercise 10. Let $f(x, y)=1$ on the square $[0,1]^{2}$. Find

1. The Fourier cosine-cosine series of f.
2. The Fourier cosine-sine series of f.
3. The Fourier sine-sine series of f.
4. The Fourier sine-cosine series of f.

Exercise 11. Same questions as in problem 10 for the function $f(x, y)=x y$ on the square $[0, \pi]^{2}$.
(1) Fourier cosine-cosine series:
$x y=\frac{A_{00}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n, 0} \cos (n x)+\frac{1}{2} \sum_{m=1}^{\infty} A_{0 m} \cos (m y)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cos (n x) \cos (m y)$
with

$$
A_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \cos (n x) \cos (m y) d x d y
$$

We have

$$
A_{00}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y d x d y=\pi^{2}
$$

Integration by parts shows that

$$
\int_{0}^{\pi} x \cos (n x) d x=\left[\frac{x \sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}\right]_{0}^{\pi}=\frac{(-1)^{n}-1}{n^{2}} .
$$

It follows that

$$
A_{n, 0}=2 \frac{(-1)^{n}-1}{n^{2}}, A_{0, m}=2 \frac{(-1)^{m}-1}{m^{2}}
$$

and for $n, m \geq 1$,

$$
A_{n, m}=\frac{4}{\pi^{2}} \frac{(-1)^{n}-1}{n^{2}} \frac{(-1)^{m}-1}{m^{2}} .
$$

Hence for $0 \leq x \leq \pi, \quad 0 \leq y \leq \pi$, we have

$$
\begin{aligned}
x y=\frac{\pi^{2}}{4}+ & \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \cos (n x)+\sum_{m=1}^{\infty} \frac{(-1)^{m}-1}{m^{2}} \cos (m y)+ \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{4\left[(-1)^{n}-1\right]\left[(-1)^{m}-1\right]}{n^{2} m^{2}} \cos (n x) \cos (m y) .
\end{aligned}
$$

(2) Fourier cosine-sine series:

$$
x y=\frac{1}{2} \sum_{m=1}^{\infty} B_{0, m} \sin (m y)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cos (n x) \sin (m y)
$$

with

$$
B_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \cos (n x) \sin (m y) d x d y
$$

We have

$$
B_{0 m}=\frac{4}{\pi^{2}}\left(\int_{0}^{\pi} x d x\right)\left(\int_{0}^{\pi} y \sin (m y) d y\right)=\frac{2 \pi(-1)^{m+1}}{m}
$$

and for $n, m \geq 1$,

$$
\begin{aligned}
B_{n, m} & =\frac{4}{\pi^{2}}\left[\frac{x \sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}\right]_{0}^{\pi}\left[-\frac{y \cos (m y)}{m}+\frac{\sin (m y)}{m^{2}}\right]_{0}^{\pi} \\
& =\frac{4}{\pi} \frac{(-1)^{n}-1}{n^{2}} \frac{(-1)^{m+1}}{m} .
\end{aligned}
$$

Hence for $0 \leq x \leq \pi, \quad 0 \leq y \leq \pi$, we have

$$
x y=\pi \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin (m y)+\frac{4}{\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \frac{(-1)^{m+1}}{m} \cos (n x) \sin (m y)
$$

(3) Fourier sine-sine series:

$$
x y=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \sin (n x) \sin (m y)
$$

with

$$
\begin{gathered}
B_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \cos (n x) \sin (m y) d x d y \\
B_{n, m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \sin (n x) \sin (m y) d x d y=4 \frac{(-1)^{n+m}}{n m} .
\end{gathered}
$$

Hence for $0 \leq x \leq \pi, \quad 0 \leq y \leq \pi$, we have

$$
x y=4 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{n+m}}{n m} \sin (n x) \sin (m y)
$$

(4) Fourier sine-cosine series: For $0 \leq x \leq \pi, 0 \leq y \leq \pi$, we have

$$
x y=\pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n y)+\frac{4}{\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{(-1)^{m}-1}{m^{2}} \sin (n x) \cos (m y) .
$$

Exercise 12. Find the Fourier sine-sine series of the function $f(x, y)$ given on the square $[0, \pi]^{2}$ by

$$
f(x, y)= \begin{cases}1 & \text { if } x<y \\ 0 & \text { if } x>y\end{cases}
$$

In the remaining exercises use multiple Fourier series to solve the BVP (double series except in the last exercise where you can use triple Fourier series).

Exercise 13.

$$
\begin{array}{ll}
u_{t}=4\left(u_{x x}+u_{y y}\right), & 0<x<2,0<y<1, t>0 \\
u_{x}(0, y, t)=u_{x}(2, y, t)=0, & 0<y<1, t>0 \\
u(x, 0, t)=u(x, 1, t)=0, & 0<x<2, t>0 \\
u(x, y, 0)=100 & 0<x<2,0<y<1 .
\end{array}
$$

If $u(x, y, t)=X(x) Y(y) T(t)$ is a nontrivial solution the homogeneous part of the BVP, then the functions X, Y, and T solve the ODE problems:

$$
\left\{\begin{array} { l }
{ X ^ { \prime \prime } (x) + \alpha X (x) = 0 , } \\
{ X ^ { \prime } (0) = 0 , \quad X ^ { \prime } (2) = 0 }
\end{array} \quad \left\{\begin{array}{l}
Y^{\prime \prime}(y)+\beta Y(y)=0, \\
Y(0)=0, \quad Y(1)=0
\end{array} \quad T^{\prime}(t)+4 \lambda T(t)=0\right.\right.
$$

where α, β, λ are separation constants and $\lambda=\alpha+\beta$.

The eigenvalues and eigenfunctions of the X-problem are:

$$
\alpha_{n}=\left(\frac{n \pi}{2}\right)^{2}, \quad X_{n}(x)=\cos \frac{n \pi x}{2}, \quad n=0,1,2,3, \cdots
$$

The eigenvalues and eigenfunctions of the Y-problem are:

$$
\beta_{m}=(m \pi)^{2}, \quad Y_{m}(y)=\sin (m \pi y), \quad m=1,2,3, \cdots
$$

For each pair of integers n, m, we have $\lambda_{n m}=\frac{\pi^{2}\left(n^{2}+4 m^{2}\right)}{4}$ and an independent solution of the T-problem is $T_{n m}(t)=\mathrm{e}^{-4 \lambda_{n m} t}$. The solutions with separated variables of the homogeneous part are

$$
\mathrm{e}^{-\pi^{2}\left(n^{2}+4 m^{2}\right) t} \cos \frac{n \pi x}{2} \sin (m \pi y) .
$$

The series representation of the general solution is

$$
u(x, y, t)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} C_{n m} \mathrm{e}^{-\pi^{2}\left(n^{2}+4 m^{2}\right) t} \cos \frac{n \pi x}{2} \sin (m \pi y) .
$$

We find the constants $C_{n m}$ so that u solves the complete BVP by using the nonhomogeneous condition

$$
u(x, y, 0)=100=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} C_{n m} \cos \frac{n \pi x}{2} \sin (m \pi y) .
$$

The last series is therefore the Fourier cosine-sine series of the function $f(x, y)=100$. We have

$$
C_{0 m}=\frac{1}{4} \int_{0}^{2} \int_{0}^{1} 100 \sin (m \pi y) d x d y=\frac{50\left[(-1)^{m}-1\right]}{\pi m}
$$

and for $n \geq 1$

$$
C_{n m}=\frac{1}{2} \int_{0}^{2} \int_{0}^{1} 100 \cos \frac{n \pi x}{2} \sin (m \pi y) d x d y=0
$$

Therefore the solution of the BVP is

$$
u(x, y, t)=\frac{50}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}-1}{m} \mathrm{e}^{-4 \pi^{2} m^{2} t} \sin (m \pi y) .
$$

Note that the solution is independent on x.
Exercise 14.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+u_{y y}, & 0<x<\pi, 0<y<\pi, t>0 \\
u(0, y, t)=u(\pi, y, t)=0, & 0<y<\pi, t>0 \\
u(x, 0, t)=u(x, \pi, t)=0, & 0<x<\pi, t>0 \\
u(x, y, 0)=0.05 x(\pi-x) y(\pi-y) & 0<x<\pi, 0<y<\pi \\
u_{t}(x, y, 0)=0 & 0<x<\pi, 0<y<\pi .
\end{array}
$$

Exercise 15.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+u_{y y}, & 0<x<\pi, 0<y<\pi, t>0 \\
u(0, y, t)=u(\pi, y, t)=0, & 0<y<\pi, t>0 \\
u(x, 0, t)=u(x, \pi, t)=0, & 0<x<\pi, t>0 \\
u(x, y, 0)=0 & 0<x<\pi, 0<y<\pi \\
u_{t}(x, y, 0)=f(x, y) & 0<x<\pi, 0<y<\pi .
\end{array}
$$

where

$$
f(x, y)= \begin{cases}1 & \text { if } \pi / 4<x<3 \pi / 4, \pi / 4<y<3 \pi / 4 \\ 0 & \text { elsewhere }\end{cases}
$$

This problem models the vibrations of a struck square membrane. The initial velocity is $f(x, y)=1$ in the middle square $[\pi / 4, \quad 3 \pi / 4]^{2}$ and zero elsewhere. If $u(x, y, t)=X(x) Y(y) T(t)$

is a nontrivial solution the homogeneous part of the BVP, then the functions X, Y, and T solve the ODE problems:

$$
\left\{\begin{array} { l }
{ X ^ { \prime \prime } (x) + \alpha X (x) = 0 , } \\
{ X (0) = 0 , X (\pi) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ Y ^ { \prime \prime } (y) + \beta Y (y) = 0 , } \\
{ Y (0) = 0 , Y (\pi) = 0 }
\end{array} \quad \left\{\begin{array}{l}
T^{\prime \prime}(t)+\lambda T(t)=0 \\
T(0)=0
\end{array}\right.\right.\right.
$$

where α, β, λ are separation constants and $\lambda=\alpha+\beta$.
The eigenvalues and eigenfunctions of the X-problem are:

$$
\alpha_{n}=n^{2}, \quad X_{n}(x)=\sin (n x), \quad n=1,2,3, \cdots
$$

The eigenvalues and eigenfunctions of the Y-problem are:

$$
\beta_{m}=m^{2}, \quad Y_{m}(y)=\sin (m y), \quad m=1,2,3, \cdots
$$

For each pair of integers n, m, we have $\lambda_{n m}=\omega_{n m}^{2}$ with $\omega_{n m}=\sqrt{n^{2}+m^{2}}$ and an independent solution of the T-problem is $T_{n m}(t)=\sin \left(\omega_{n m} t\right)$. The solutions with separated variables of the homogeneous part are

$$
\sin \left(\omega_{n m} t\right) \sin (n x) \sin (m y)
$$

The series representation of the general solution is

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n m} \sin \left(\omega_{n m} t\right) \sin (n x) \sin (m y) .
$$

To find the constants $C_{n m}$ so that u solves the complete BVP we start by computing $u_{t}(x, y, t)$

$$
u_{t}(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \omega_{n m} C_{n m} \cos \left(\omega_{n m} t\right) \sin (n x) \sin (m y)
$$

and then evaluate at $t=0$.

$$
u_{t}(x, y, 0)=f(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \omega_{n m} C_{n m} \sin (n x) \sin (m y) .
$$

The last series is therefore the Fourier sine-sine series of the function $f(x, y)$. We have

$$
\begin{aligned}
\omega_{n m} C_{n m} & =\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} f(x, y) \sin (n x) \sin (m y) d x d y=0 \\
& =\frac{4}{\pi^{2}} \int_{\pi / 4}^{3 \pi / 4} \sin (n x) d x \int_{\pi / 4}^{3 \pi / 4} \sin (m y) d y \\
& =\frac{4}{\pi^{2} n m}\left[\cos \frac{3 n \pi}{4}-\cos \frac{n \pi}{4}\right]\left[\cos \frac{3 m \pi}{4}-\cos \frac{m \pi}{4}\right]
\end{aligned}
$$

If we use the trigonometric identity $\cos A-\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$, we can rewrite

$$
\omega_{n m} C_{n m}=\frac{16}{\pi^{2} n m} \cos \frac{n \pi}{2} \cos \frac{n \pi}{4} \cos \frac{m \pi}{2} \cos \frac{m \pi}{4}
$$

Since $\cos \frac{N \pi}{2}=0$ if N is odd and $\cos \frac{N \pi}{2}=(-1)^{J}$ if $N=2 J$, it follows that $C_{n m}=0$ if either n or m is not a multiple of 4 and

$$
c_{4 j, 4 k}=\frac{(-1)^{j+k}}{\pi^{2} 4 \sqrt{j^{2}+k^{2}} j k} .
$$

Therefore the solution of the BVP is

$$
u(x, y, t)=\frac{1}{4 \pi^{2}} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{j+k}}{\sqrt{j^{2}+k^{2}} j k} \sin \left[4 \sqrt{j^{2}+k^{2}} t\right] \sin (4 j x) \sin (4 k y)
$$

Note that the solution is independent on x.
Exercise 16.

$$
\begin{array}{ll}
u_{x x}+u_{y y}=2 u+1, & 0<x<\pi, \quad 0<y<\pi \\
u(0, y)=u(\pi, y)=0, & 0<y<\pi \\
u(x, 0)=u(x, \pi)=0, & 0<x<\pi
\end{array}
$$

Exercise 17.

$$
\begin{array}{ll}
u_{x x}+u_{y y}=x y, & 0<x<\pi, \quad 0<y<\pi \\
u(0, y)=u(\pi, y)=0, & 0<y<\pi, \\
u(x, 0)=u(x, \pi)=0, & 0<x<\pi
\end{array}
$$

The unique solution $u(x, y)$ can be computed using three approaches.
(1) Expansion with respect to eigenfunctions $\sin (n x)$:We seek the solution

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n}(y) \sin (n x) .
$$

First expand $x y$ in its Fourier sine series in x :

$$
x y=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1} y}{n} \sin (n x) .
$$

The PDE becomes

$$
\sum_{n=1}^{\infty}\left[c_{n}^{\prime \prime}(y)-n^{2} c_{n}(y)\right] \sin (n x)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1} y}{n} \sin (n x)
$$

The functions $c_{n}(y)$ satisfies the ODE problem

$$
c_{n}^{\prime \prime}(y)-n^{2} c_{n}\left(y=\frac{2(-1)^{n+1} y}{n}, \quad c_{n}(0)=0, \quad c_{n}(\pi)=0 .\right.
$$

By using the UC method we find $c_{n}(y)=\frac{2(-1)^{n} \pi}{n^{3}}\left[\frac{\sinh (n y)}{\sinh (n \pi)}-\frac{y}{\pi}\right]$. The solution of the BVP is

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{2(-1)^{n} \pi}{n^{3}}\left[\frac{\sinh (n y)}{\sinh (n \pi)}-\frac{y}{\pi}\right] \sin (n x)
$$

(2) Expansion with respect to eigenfunctions $\sin (m y):$ We seek the solution

$$
u(x, y)=\sum_{m=1}^{\infty} c_{n}(x) \sin (m y)
$$

A similar arguments as above give the solution of the BVP as

$$
u(x, y)=\sum_{m=1}^{\infty} \frac{2(-1)^{m} \pi}{m^{3}}\left[\frac{\sinh (m x)}{\sinh (m \pi)}-\frac{x}{\pi}\right] \sin (m y)
$$

(3) Expansion with respect to eigenfunctions $\sin (n x) \sin (m y)$:We seek the solution

$$
u(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n m} \sin (n x) \sin (m y)
$$

First expand $x y$ into its Fourier sine-sine series

$$
x y=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{4(-1)^{n+m}}{n m} \sin (n x) \sin (m y)
$$

The PDE becomes

$$
-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(n^{2}+m^{2}\right) C_{n m} \sin (n x) \sin (m y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{4(-1)^{n+m}}{n m} \sin (n x) \sin (m y)
$$

It follows that $C_{n m}=\frac{4(-1)^{n+m+1}}{\left(n^{2}+m^{2}\right) n m}$ and the solution of the BVP is

$$
u(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{4(-1)^{n+m+1}}{\left(n^{2}+m^{2}\right) n m} \sin (n x) \sin (m y)
$$

Exercise 18. (Dirichlet problem in a cube)

$$
\begin{array}{ll}
u_{x x}+u_{y y}+u_{z z}=0, & 0<x<\pi, \quad 0<y<\pi, \quad 0<z<\pi, \\
u(0, y, z)=u(\pi, y, z)=0, & 0<y<\pi, 0<z<\pi \\
u(x, 0, z)=-\sin (2 x) \sin (5 z), & 0<x<\pi \quad 0<z<\pi \\
u(x, \pi, z)=\sin (3 x) \sin (z), & 0<x<\pi \quad 0<z<\pi \\
u(x, y, 0)=\sin x \sin (2 y), \quad u(x, y, \pi)=0, & 0<x<\pi, 0<y<\pi
\end{array}
$$

