
NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS
AND PROBLEMS IN HIGHER DIMENSIONS

1. Exercises.

In exercises 1 to 7 solve the nonhomogeneous boundary value problems

Exercise 1.
ut = uxx 0 < x < π, t > 0
u(0, t) = 1, u(π, t) = 3 t > 0
u(x, 0) = x 0 < x < π

First seek a steady state function s(x) that satisfies the end points conditions. That is s′′(x) = 0,

s(0) = 1 and s(π) = 3. We find s(x) =
2x

π
+ 1.

Now let v(x, t) = u(x, t)− s(x). In order for u to solve the BVP, the function v must solve

vt = vxx 0 < x < π, t > 0
v(0, t) = 0, v(π, t) = 0 t > 0

v(x, 0) = x− s(x) =
π − 2

π
x− 1 0 < x < π

The v-problem can be solved by the method of separation of variables. We find

v(x, t) = − 2

π

∞∑
n=1

1 + (π − 3)(−1)n

n
e−n2t sin(nx).

Therefore the solution u is given by

u(x, t) = s(x) + v(x, t) =
2x

π
+ 1− 2

π

∞∑
n=1

1 + (π − 3)(−1)n

n
e−n2t sin(nx).

Exercise 2.
ut = uxx + e−x 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π

Exercise 3.
ut = uxx − x 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = x 0 < x < π

Seek the solution u(x, t) as u = v + w where the functions v(x, t) and w(x, t) are solutions of
the BVPs  vt(x, t) = vxx(x, t)

v(0, t) = 0, v(π, t) = 0
v(x, 0) = x

and

 wt(x, t) = wxx(x, t)− x
w(0, t) = 0, w(π, t) = 0
w(x, 0) = 0

The separation of variables gives

v(x, t) = 2
∞∑
n=1

(−1)n+1

n
e−n2t sin(nx).
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To solve the w-problem, we use the eigenfunctions expansion of the SL-problem X ′′ + λX =
0, X(0) = X(π) = 0. That is, seek w(x, t) as

w(x, t) =
∞∑
n=1

cn(t) sin(nx) .

where cn(t) are functions of t that need to be determined. Since x = 2
∞∑
n=1

(−1)n+1

n
sin(nx), the

w-PDE can be rewritten as
∞∑
n=1

c′n(t) sin(nx) = −
∞∑
n=1

n2cn(t) sin(nx)− 2
∞∑
n=1

(−1)n+1

n
sin(nx) .

The initial condition w(x, 0) = 0 implies that cn(0) = 0 for all n ≥ 1. It follows that for n ≥ 1,
the function cn(t) satisfies the first order linear ODE problem

c′n(t) + n2cn(t) =
2(−1)n

n
, cn(0) = 0.

We use the method of undetermined coefficients to find

cn(t) =
2(−1)n

n3

(
1− e−n2t

)
.

Therefore

w(x, t) =
∞∑
n=1

2(−1)n

n3

(
1− e−n2t

)
sin(nx) .

The solution u is:

u(x, t) = v(x, t) + w(x, t)

= 2
∞∑
n=1

(−1)n+1

n
e−n2t sin(nx) +

∞∑
n=1

2(−1)n

n3

(
1− e−n2t

)
sin(nx)

= 2
∞∑
n=1

(−1)n

n3

[
1− (1 + n2)e−n2t

]
sin(nx)

Exercise 4.
ut = uxx + 2t 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 100 t > 0
u(x, 0) = 0 0 < x < π

Exercise 5.
utt = uxx − g 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = 0, ut(x, 0) = sinx 0 < x < π

where g is a constant (gravitational for example).

Seek the solution u(x, t) as u = v + w where the functions v(x, t) and w(x, t) are solutions of
the BVPs  vtt(x, t) = vxx(x, t)

v(0, t) = 0, v(π, t) = 0
v(x, 0) = 0, vt(x, 0) = sin x

and

 wtt(x, t) = wxx(x, t)− g
w(0, t) = 0, w(π, t) = 0
w(x, 0) = 0, wt(x, 0) = 0

The separation of variables gives

v(x, t) = sin t sinx.
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To solve the w-problem, we use the eigenfunctions expansion of the SL-problem X ′′ + λX =
0, X(0) = X(π) = 0. That is, seek w(x, t) as

w(x, t) =
∞∑
n=1

cn(t) sin(nx) .

where cn(t) are functions of t that need to be determined. Since g =
2g

π

∞∑
n=1

1− (−1)n

n
sin(nx),

the w-PDE can be rewritten as
∞∑
n=1

c′′n(t) sin(nx) = −
∞∑
n=1

n2cn(t) sin(nx)−
2g

π

∞∑
n=1

1− (−1)n

n
sin(nx) .

The initial conditions w(x, 0) = 0 and wt(x, 0) = 0 implies that cn(0) = 0 and c′n(0) = 0 for
all n ≥ 1. It follows that for n ≥ 1, the function cn(t) satisfies the second order linear ODE
problem

c′′n(t) + n2cn(t) =
2g [(−1)n − 1]

πn
, cn(0) = 0 , c′n(0) = 0.

We use the method of undetermined coefficients to find

cn(t) =
2g [(−1)n − 1]

πn3
(1− cos(nt)) .

Therefore

w(x, t) =
∞∑
n=1

2g [(−1)n − 1]

πn3
(1− cos(nt)) sin(nx) .

The solution u is:

u(x, t) = v(x, t) + w(x, t) = sin t sin x+
2g

π

∞∑
n=1

[(−1)n − 1]

n3
(1− cos(nt)) sin(nx) .

Exercise 6.
utt = uxx + sin(2x) 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = sin x, ut(x, 0) = sin(3x) 0 < x < π

Exercise 7.
utt = uxx + sin(2x) cos t 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = 0, ut(x, 0) = sinx 0 < x < π

Seek the solution u(x, t) as u = v + w where the functions v(x, t) and w(x, t) are solutions of
the BVPs vtt(x, t) = vxx(x, t)

v(0, t) = 0, v(π, t) = 0
v(x, 0) = 0, vt(x, 0) = sinx

and

 wtt(x, t) = wxx(x, t) + cos t sin(2x)
w(0, t) = 0, w(π, t) = 0
w(x, 0) = 0, wt(x, 0) = 0

The separation of variables gives

v(x, t) = sin t sinx.

To solve the w-problem, we use the eigenfunctions expansion of the SL-problem X ′′ + λX =
0, X(0) = X(π) = 0. That is, seek w(x, t) as

w(x, t) =
∞∑
n=1

cn(t) sin(nx) .
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where cn(t) are functions of t that need to be determined. The w-PDE can be rewritten as

∞∑
n=1

c′′n(t) sin(nx) = −
∞∑
n=1

n2cn(t) sin(nx) + cos t sin(2x) .

The initial conditions w(x, 0) = 0 and wt(x, 0) = 0 implies that cn(0) = 0 and c′n(0) = 0 for
all n ≥ 1. It follows that for n ̸= 2, the function cn(t) satisfies the second order linear ODE
problem {

c′′n(t) + n2cn(t) = 0
cn(0) = 0 , c′n(0) = 0

=⇒ cn(t) = 0

For n = 2, c2(t) satisfies the ODE problem

c′′2(t) + 4c2(t) = cos t, c2(0) = 0, c′2(0) = 0.

We use the method of undetermined coefficients to find

c2(t) =
cos t− cos(2t)

3
.

Therefore

w(x, t) =
cos t− cos(2t)

3
sin(2x) .

The solution u is:

u(x, t) = v(x, t) + w(x, t) = sin t sinx+
cos t− cos(2t)

3
sin(2x) .

Exercise 8. The function f(x, y) is doubly periodic with period 2π in x and in y. It is given
on [−π, π]2 by f(x, y) = xy2. Find the double Fourier series of f .

Exercise 9. Same question as in problem 8 for the function given on [−π, π]2 by f(x, y) = x2y2.

The function f(x, y) which is 2π-periodic in x and 2π-periodic in y and defined in the square
[−π, π]2 by f(x, y) = x2y2 is even in x and even in y. Therefore its double Fourier series has
the form

A00

4
+

1

2

∞∑
n=1

An,0 cos(nx) +
1

2

∞∑
m=1

A0m cos(my) +
∞∑
n=1

∞∑
m=1

Anm cos(nx) cos(my)

with

Anm =
4

π2

∫ π

0

∫ π

0

x2y2 cos(nx) cos(my) dx dy.

We have

A00 =
4

π2

∫ π

0

∫ π

0

x2y2 dx dy =
4π4

9
.

A repeated integration by parts shows that∫ π

0

x2 cos(nx) dx =

[
x2 sin(nx)

n
+

2x cos(nx)

n2
− 2 sin(nx)

n3

]π
0

=
2π(−1)n

n2
.

It follows that

An,0 =
8π2(−1)n

3n2
, A0,m =

8π2(−1)m

3m2
,

and for n,m ≥ 1

An,m =
16(−1)n+m

n2m2
.
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Hence for −π ≤ x ≤ π, −π ≤ y ≤ π, we have

x2y2 =
π4

9
+

∞∑
n=1

4π2(−1)n

3n2
cos(nx)+

∞∑
m=1

4π2(−1)m

3m2
cos(my)+

∞∑
n=1

∞∑
m=1

16(−1)n+m

n2m2
cos(nx) cos(my) .

Exercise 10. Let f(x, y) = 1 on the square [0, 1]2. Find
1. The Fourier cosine-cosine series of f .
2. The Fourier cosine-sine series of f .
3. The Fourier sine-sine series of f .
4. The Fourier sine-cosine series of f .

Exercise 11. Same questions as in problem 10 for the function f(x, y) = xy on the square
[0, π]2.

(1) Fourier cosine-cosine series:

xy =
A00

4
+

1

2

∞∑
n=1

An,0 cos(nx) +
1

2

∞∑
m=1

A0m cos(my) +
∞∑
n=1

∞∑
m=1

Anm cos(nx) cos(my)

with

Anm =
4

π2

∫ π

0

∫ π

0

xy cos(nx) cos(my) dx dy.

We have

A00 =
4

π2

∫ π

0

∫ π

0

xy dx dy = π2 .

Integration by parts shows that∫ π

0

x cos(nx) dx =

[
x sin(nx)

n
+

cos(nx)

n2

]π
0

=
(−1)n − 1

n2
.

It follows that

An,0 = 2
(−1)n − 1

n2
, A0,m = 2

(−1)m − 1

m2
,

and for n,m ≥ 1,

An,m =
4

π2

(−1)n − 1

n2

(−1)m − 1

m2
.

Hence for 0 ≤ x ≤ π, 0 ≤ y ≤ π, we have

xy =
π2

4
+

∞∑
n=1

(−1)n − 1

n2
cos(nx) +

∞∑
m=1

(−1)m − 1

m2
cos(my)+

+
∞∑
n=1

∞∑
m=1

4[(−1)n − 1][(−1)m − 1]

n2m2
cos(nx) cos(my) .

(2) Fourier cosine-sine series:

xy =
1

2

∞∑
m=1

B0,m sin(my) +
∞∑
n=1

∞∑
m=1

Bnm cos(nx) sin(my)

with

Bnm =
4

π2

∫ π

0

∫ π

0

xy cos(nx) sin(my) dx dy.

We have

B0m =
4

π2

(∫ π

0

x dx

) (∫ π

0

y sin(my) dy

)
=

2π(−1)m+1

m
,
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and for n,m ≥ 1,

Bn,m =
4

π2

[
x sin(nx)

n
+

cos(nx)

n2

]π
0

[
−y cos(my)

m
+

sin(my)

m2

]π
0

=
4

π

(−1)n − 1

n2

(−1)m+1

m
.

Hence for 0 ≤ x ≤ π, 0 ≤ y ≤ π, we have

xy = π
∞∑

m=1

(−1)m+1

m
sin(my) +

4

π

∞∑
n=1

∞∑
m=1

(−1)n − 1

n2

(−1)m+1

m
cos(nx) sin(my)

(3) Fourier sine-sine series:

xy =
∞∑
n=1

∞∑
m=1

Bnm sin(nx) sin(my)

with

Bnm =
4

π2

∫ π

0

∫ π

0

xy cos(nx) sin(my) dx dy.

Bn,m =
4

π2

∫ π

0

∫ π

0

xy sin(nx) sin(my) dxdy = 4
(−1)n+m

nm
.

Hence for 0 ≤ x ≤ π, 0 ≤ y ≤ π, we have

xy = 4
∞∑
n=1

∞∑
m=1

(−1)n+m

nm
sin(nx) sin(my)

(4) Fourier sine-cosine series: For 0 ≤ x ≤ π, 0 ≤ y ≤ π, we have

xy = π
∞∑
n=1

(−1)n+1

n
sin(ny) +

4

π

∞∑
n=1

∞∑
m=1

(−1)n+1

n

(−1)m − 1

m2
sin(nx) cos(my) .

Exercise 12. Find the Fourier sine-sine series of the function f(x, y) given on the square [0, π]2

by

f(x, y) =

{
1 if x < y
0 if x > y

In the remaining exercises use multiple Fourier series to solve the BVP (double series except
in the last exercise where you can use triple Fourier series).

Exercise 13.

ut = 4(uxx + uyy), 0 < x < 2, 0 < y < 1, t > 0
ux(0, y, t) = ux(2, y, t) = 0, 0 < y < 1, t > 0
u(x, 0, t) = u(x, 1, t) = 0, 0 < x < 2, t > 0
u(x, y, 0) = 100 0 < x < 2, 0 < y < 1 .

If u(x, y, t) = X(x)Y (y)T (t) is a nontrivial solution the homogeneous part of the BVP, then the
functions X, Y , and T solve the ODE problems: X ′′(x) + αX(x) = 0,

X ′(0) = 0, X ′(2) = 0

 Y ′′(y) + βY (y) = 0,

Y (0) = 0, Y (1) = 0
T ′(t) + 4λT (t) = 0

where α, β, λ are separation constants and λ = α + β.



NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS AND PROBLEMS IN HIGHER DIMENSIONS 7

The eigenvalues and eigenfunctions of the X-problem are:

αn =
(nπ

2

)2

, Xn(x) = cos
nπx

2
, n = 0, 1, 2, 3, · · ·

The eigenvalues and eigenfunctions of the Y -problem are:

βm = (mπ)2, Ym(y) = sin(mπy), m = 1, 2, 3, · · ·

For each pair of integers n,m, we have λnm =
π2(n2 + 4m2)

4
and an independent solution of

the T -problem is Tnm(t) = e−4λnmt. The solutions with separated variables of the homogeneous
part are

e−π2(n2+4m2) t cos
nπx

2
sin(mπy) .

The series representation of the general solution is

u(x, y, t) =
∞∑
n=0

∞∑
m=1

Cnme
−π2(n2+4m2) t cos

nπx

2
sin(mπy) .

We find the constants Cnm so that u solves the complete BVP by using the nonhomogeneous
condition

u(x, y, 0) = 100 =
∞∑
n=0

∞∑
m=1

Cnm cos
nπx

2
sin(mπy) .

The last series is therefore the Fourier cosine-sine series of the function f(x, y) = 100. We have

C0m =
1

4

∫ 2

0

∫ 1

0

100 sin(mπy) dxdy =
50 [(−1)m − 1]

πm

and for n ≥ 1

Cnm =
1

2

∫ 2

0

∫ 1

0

100 cos
nπx

2
sin(mπy) dxdy = 0.

Therefore the solution of the BVP is

u(x, y, t) =
50

π

∞∑
m=1

(−1)m − 1

m
e−4π2m2 t sin(mπy) .

Note that the solution is independent on x.

Exercise 14.

utt = uxx + uyy, 0 < x < π, 0 < y < π, t > 0
u(0, y, t) = u(π, y, t) = 0, 0 < y < π, t > 0
u(x, 0, t) = u(x, π, t) = 0, 0 < x < π, t > 0
u(x, y, 0) = 0.05x(π − x)y(π − y) 0 < x < π, 0 < y < π
ut(x, y, 0) = 0 0 < x < π, 0 < y < π .

Exercise 15.

utt = uxx + uyy, 0 < x < π, 0 < y < π, t > 0
u(0, y, t) = u(π, y, t) = 0, 0 < y < π, t > 0
u(x, 0, t) = u(x, π, t) = 0, 0 < x < π, t > 0
u(x, y, 0) = 0 0 < x < π, 0 < y < π
ut(x, y, 0) = f(x, y) 0 < x < π, 0 < y < π .

where

f(x, y) =

{
1 if π/4 < x < 3π/4, π/4 < y < 3π/4
0 elsewhere

This problem models the vibrations of a struck square membrane. The initial velocity is
f(x, y) = 1 in the middle square [π/4, 3π/4]2 and zero elsewhere. If u(x, y, t) = X(x)Y (y)T (t)
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is a nontrivial solution the homogeneous part of the BVP, then the functions X, Y , and T solve
the ODE problems: X ′′(x) + αX(x) = 0,

X(0) = 0, X(π) = 0

 Y ′′(y) + βY (y) = 0,

Y (0) = 0, Y (π) = 0

 T ′′(t) + λT (t) = 0

T (0) = 0

where α, β, λ are separation constants and λ = α + β.
The eigenvalues and eigenfunctions of the X-problem are:

αn = n2, Xn(x) = sin(nx), n = 1, 2, 3, · · ·

The eigenvalues and eigenfunctions of the Y -problem are:

βm = m2, Ym(y) = sin(my), m = 1, 2, 3, · · ·

For each pair of integers n,m, we have λnm = ω2
nm with ωnm =

√
n2 +m2 and an independent

solution of the T -problem is Tnm(t) = sin(ωnmt). The solutions with separated variables of the
homogeneous part are

sin(ωnmt) sin(nx) sin(my) .

The series representation of the general solution is

u(x, y, t) =
∞∑
n=1

∞∑
m=1

Cnm sin(ωnmt) sin(nx) sin(my) .

To find the constants Cnm so that u solves the complete BVP we start by computing ut(x, y, t)

ut(x, y, t) =
∞∑
n=1

∞∑
m=1

ωnmCnm cos(ωnmt) sin(nx) sin(my)

and then evaluate at t = 0.

ut(x, y, 0) = f(x, y) =
∞∑
n=1

∞∑
m=1

ωnmCnm sin(nx) sin(my) .

The last series is therefore the Fourier sine-sine series of the function f(x, y). We have

ωnmCnm =
4

π2

∫ π

0

∫ π

0

f(x, y) sin(nx) sin(my) dxdy = 0

=
4

π2

∫ 3π/4

π/4

sin(nx)dx

∫ 3π/4

π/4

sin(my)dy

=
4

π2nm

[
cos

3nπ

4
− cos

nπ

4

] [
cos

3mπ

4
− cos

mπ

4

]
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If we use the trigonometric identity cosA− cosB = 2 cos
A+B

2
cos

A−B

2
, we can rewrite

ωnmCnm =
16

π2nm
cos

nπ

2
cos

nπ

4
cos

mπ

2
cos

mπ

4
.

Since cos Nπ
2

= 0 if N is odd and cos Nπ
2

= (−1)J if N = 2J , it follows that Cnm = 0 if either n
or m is not a multiple of 4 and

c4j,4k =
(−1)j+k

π24
√
j2 + k2 j k

.

Therefore the solution of the BVP is

u(x, y, t) =
1

4π2

∞∑
j=1

∞∑
k=1

(−1)j+k√
j2 + k2 j k

sin
[
4
√

j2 + k2 t
]
sin(4jx) sin(4ky) .

Note that the solution is independent on x.

Exercise 16.
uxx + uyy = 2u+ 1, 0 < x < π, 0 < y < π,
u(0, y) = u(π, y) = 0, 0 < y < π,
u(x, 0) = u(x, π) = 0, 0 < x < π .

Exercise 17.
uxx + uyy = xy, 0 < x < π, 0 < y < π,
u(0, y) = u(π, y) = 0, 0 < y < π,
u(x, 0) = u(x, π) = 0, 0 < x < π .

The unique solution u(x, y) can be computed using three approaches.

(1) Expansion with respect to eigenfunctions sin(nx):We seek the solution

u(x, y) =
∞∑
n=1

cn(y) sin(nx) .

First expand xy in its Fourier sine series in x:

xy =
∞∑
n=1

2(−1)n+1y

n
sin(nx) .

The PDE becomes
∞∑
n=1

[
c′′n(y)− n2cn(y)

]
sin(nx) =

∞∑
n=1

2(−1)n+1y

n
sin(nx) .

The functions cn(y) satisfies the ODE problem

c′′n(y)− n2cn(y =
2(−1)n+1y

n
, cn(0) = 0, cn(π) = 0 .

By using the UC method we find cn(y) =
2(−1)nπ

n3

[
sinh(ny)

sinh(nπ)
− y

π

]
. The solution of the

BVP is

u(x, y) =
∞∑
n=1

2(−1)nπ

n3

[
sinh(ny)

sinh(nπ)
− y

π

]
sin(nx) .
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(2) Expansion with respect to eigenfunctions sin(my):We seek the solution

u(x, y) =
∞∑

m=1

cn(x) sin(my) .

A similar arguments as above give the solution of the BVP as

u(x, y) =
∞∑

m=1

2(−1)mπ

m3

[
sinh(mx)

sinh(mπ)
− x

π

]
sin(my) .

(3) Expansion with respect to eigenfunctions sin(nx) sin(my):We seek the solution

u(x, y) =
∞∑
n=1

∞∑
m=1

Cnm sin(nx) sin(my) .

First expand xy into its Fourier sine-sine series

xy =
∞∑
n=1

∞∑
m=1

4(−1)n+m

nm
sin(nx) sin(my) .

The PDE becomes

−
∞∑
n=1

∞∑
m=1

(n2 +m2)Cnm sin(nx) sin(my) =
∞∑
n=1

∞∑
m=1

4(−1)n+m

nm
sin(nx) sin(my) .

It follows that Cnm =
4(−1)n+m+1

(n2 +m2)nm
and the solution of the BVP is

u(x, y) =
∞∑
n=1

∞∑
m=1

4(−1)n+m+1

(n2 +m2)nm
sin(nx) sin(my) .

Exercise 18. (Dirichlet problem in a cube)

uxx + uyy + uzz = 0, 0 < x < π, 0 < y < π, 0 < z < π,
u(0, y, z) = u(π, y, z) = 0, 0 < y < π, 0 < z < π
u(x, 0, z) = − sin(2x) sin(5z), 0 < x < π 0 < z < π,
u(x, π, z) = sin(3x) sin(z), 0 < x < π 0 < z < π,
u(x, y, 0) = sinx sin(2y), u(x, y, π) = 0, 0 < x < π, 0 < y < π .


