
LEGENDRE POLYNOMIALS AND APPLICATIONS

1. Exercises.

Exercise 1. Use the recurrence relation that gives the coefficients of the Legendre polynomials
to show that

P2n(0) = (−1)n
(2n)!

22n(n!)2
.

We have P2n(x) =
1

22n

n∑
k=0

(−1)k(4n− 2k)!

k! (2n− k)! (2n− 2k)!
x2n−2k. Therefore

P2n(0) =
1

22n

n∑
k=0

(−1)k(4n− 2k)!

k! (2n− k)! (2n− 2k)!
02n−2k = (−1)n

(2n)!

22n(n!)2
.

Exercise 2. Use exercise 1 to verify that

P2n(0)− P2n+2(0) = (−1)n
(
4n+ 3

2n+ 2

)
(2n)!

22n(n!)2
.

Exercise 3. Use P0(x) = 1, P1(x) = x and the recurrence relation (8):

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x)

to find P2(x), P3(x), P4(x), and P5(x).

We have

P2(x) =
3

2
xP1(x)−

1

2
xP0(x) =

3

2
x2 − 1

2

P3(x) =
5

3
xP2(x)−

2

3
xP1(x) =

5

2
x3 − 3

2
x

P4(x) =
7

4
xP3(x)−

3

4
xP2(x) =

35

8
x4 − 30

8
x2 +

3

8

Exercise 4. Use Rodrigues’ formula to find the Legendre polynomials P0(x) to P5(x).

Exercise 5. Use The relations

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x)
(2n+ 1)Pn(x) = P ′

n+1(x)− P ′
n−1(x)

to establish the formula

xP ′
n(x) = nPn(x) + P ′

n−1(x) .

Exercise 6. Write x2 as a linear combination of P0(x), P1(x), and P2(x). That is, find constants
A, B, and C so that

x2 = AP0(x) +BP1(x) + CP2(x) .
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By using P0(x) = 1, P1(x) = x and P2(x) =
3

2
x2 − 1

2
, we get

x2 = AP0(x) +BP1(x) + CP2(x)

= A+Bx+ C

(
3

2
x2 − 1

2

)

=

(
A− C

2

)
+Bx+

3C

2
x2

After equating the coefficients, we get C =
2

3
, B = 0, A = 1

3
. Hence

x2 =
1

3
P0(x) + 0P1(x) +

2

3
P2(x) .

Exercise 7. Write x3 as a linear combination of P0, P1, P2, and P3.

Exercise 8. Write x4 as a linear combination of P0, P1, P2, P3 and P4.

An argument similar to that used in Problem 6 shows that

x4 =
1

5
P0(x) + 0P1(x) +

4

7
P2(x) + 0P3(x) +

8

35
P4(x)

Exercise 9. Use the results from exercises 6, 7, and 8 to find the integrals.∫ 1

−1

x2P2(x)dx,

∫ 1

−1

x2P31(x)dx∫ 1

−1

x3P1(x)dx,

∫ 1

−1

x3P4(x)dx∫ 1

−1

x4P2(x)dx,

∫ 1

−1

x4P4(x)dx

We use the fact that orthogonality ⟨Pn(x), Pm(x)⟩ = 0 (for n ̸= m) and norm ⟨Pn(x), Pn(x)⟩ =
2/(2n+ 1) and the above exercises to find∫ 1

−1

x2P2(x) = ⟨1
3
P0(x) + 0P1(x) +

2

3
P2(x), P2(x)⟩

=
1

3
⟨P0(x), P2(x)⟩+

2

3
∥P2(x)∥2 =

4

15∫ 1

−1

x2P31(x) = ⟨1
3
P0(x) + 0P1(x) +

2

3
P2(x), P31(x)⟩

=
1

3
⟨P0(x), P31(x)⟩+

2

3
⟨P2(x), P31(x)⟩ = 0

Exercise 10. Use the fact that for m ∈ Z+, the function xm can written as a linear combination
of P0(x), · · · , Pm(x) to show that∫ 1

−1

xmPn(x) = 0, for n > m .
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Exercise 11. Use formula (6) and a property (even/odd) of the Legendre polynomials to verify
that ∫ h

−1

Pn(x)dx =
1

2n+ 1
[Pn+1(h)− Pn−1(h)]∫ 1

h

Pn(x)dx =
1

2n+ 1
[Pn−1(h)− Pn+1(h)]

Note that since Pm(1) = 1 for all m and since Pm is an even/odd function if m is even/odd,
then Pm(−1) = (−1)m. It follows that Pn+1(−1)− Pn−1(−1) = 0. We have then∫ h

−1

Pn(x)dx =
1

2n+ 1

∫ h

−1

[
P ′
n+1(x)− P ′

n−1(x)
]
dx

=
1

2n+ 1
[Pn+1(h)− Pn−1(h)− Pn+1(−1) + Pn−1(−1)]

=
1

2n+ 1
[Pn−1(h)− Pn+1(h)]

Exercise 12. Find the Legendre series of the functions

f(x) = −3, g(x) = x3, h(x) = x4, m(x) = |x|.

Legendre series of |x|: Since the function is even, then for x ∈ [−1, 1] we have

|x| =
∞∑
j=0

c2jP2j(x), with c2j = (4j + 1)

∫ 1

0

xP2j(x)dx .

It follows from property (8): (2n+1)xPn(x) = (n+1)Pn+1(x)+nPn−1(x) and Exercise 11 with
h = 0 that

(4j + 1)

∫ 1

0

xP2j(x)dx =

∫ 1

0

[(2j + 1)P2j+1 + 2jP2j−1(x)] dx

=
2j + 1

2j + 2
[P2j(0)− P2j+2(0)] +

2j

2j
[P2j−2(0)− P2j(0)]

= P2j−2(0)−
1

2j + 2
P2j(0)−

2j + 1

2j + 2
P2j+2(0)

Therefore

|x| =
∞∑
j=0

[
P2j−2(0)−

1

2j + 2
P2j(0)−

2j + 1

2j + 2
P2j+2(0)

]
P2j(x)

Exercise 13. Find the Legendre series of the function

f(x) =

{
0 for − 1 < x < 0
x for 0 < x < 1

Exercise 14. Find the Legendre series of the function

f(x) =

{
0 for − 1 < x < h
1 for h < x < 1

(Use exercise 11.)
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Exercise 15. Find the first three nonzero terms of the Legendre series of the functions f(x) =
sin x and g(x) = cos x.

Legendre series of sin x:

sinx =
∞∑
k=0

c2k+1P2k+1(x), with c2k+1 = (4k + 3)

∫ 1

0

sinxP2k+1(x)dx .

We have

c1 = 3

∫ 1

0

x sin x dx

c3 =
7

2

∫ 1

0

(5x3 sin x− 3 sin x) dx

c5 =
11

8

∫ 1

0

(63x5 sinx− 70x3 sinx+ 15x sin x) dx .

Now we use the approximation sin 1 = 0.8415 and cos 1 = 0.5403 to find∫ 1

0

x sin x dx ≈ 0.301,

∫ 1

0

x3 sinx dx ≈ 0.177,

∫ 1

0

x5 sinx dx ≈ −2.036 .

It follows that

c1 ≈ 0.904, c3 ≈ −0.0630 c5 ≈ −187.214

and

sin x ≈ (0.904)P1(x)− (0.0630)P3(x)− (187.214)P5(x) + · · ·

In exercises 16 to 19 solve the following Dirichlet problem inside the sphere uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < L, 0 < ϕ < π

u(L, ϕ) = f(ϕ) 0 < ϕ < π

Assume u(ρ, ϕ) is bounded.

For such a problem the bounded solutions with separated variables have the form un(ρ, ϕ) =
ρnPn(cosϕ) with n = 0, 1, 2, 2, · · · . The series representation of the general solution is

u(ρ, ϕ) =
∞∑
n=0

cnρ
nPn(cosϕ) .

The nonhomogeneous condition implies that f(ϕ) =
∑∞

n=0 cnL
nPn(cosϕ). Equivalently g(x) =∑∞

n=0 cnL
nPn(x), where g(x) = f(arccos x). This means

Lncn =
2n+ 1

2

∫ 1

−1

f(arccos x)Pn(x) dx.

Exercise 16. L = 10, and f(ϕ) =

{
50 for 0 < ϕ < (π/2),
100 for (π/2) < ϕ < π.

In this case we have (after

using Exercise 11)

10ncn =
2n+ 1

2

[
100

∫ 0

−1

Pn(x) dx+ 50

∫ 1

0

Pn(x) dx

]
= 25 [Pn+1(0)− Pn−1(0)]
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For n even we have Pn+1(0) = Pn−1(0) = and ceven = 0. For n = 2k + 1, we have (after using

the formula P2j =
(−1)j(2j)!

22j(j!)2
)

102k+1c2k+1 =
(−1)k(2k)!

22k+1(k!)2(k + 1)

The solution of the BVP is

u(ρ, ϕ) =
∞∑
k=0

(−1)k(2k)!

22k+1(k!)2(k + 1)

( ρ

10

)2k+1

P2k+1(cosϕ) .

Exercise 17. L = 1 and f(ϕ) = cosϕ.

Exercise 18. L = 5 and f(ϕ) =

{
50 for 0 < ϕ < (π/4),
0 for (π/4) < ϕ < π.

Exercise 19. L = 2 and f(ϕ) = sin2 ϕ = 1− cos2 ϕ. In this case the function g(x) is given by
g(x) = 1− x2. Its Legendre series (use previous exercises)

g(x) = P0(x)− (
1

3
P0(x) +

2

3
P2(x)) =

2

3
P0(x)−

2

3
P2(x).

That is cn = 0 for n ̸= 0, 2; 20c0 = 2/3 and 22c2 = −2/3. The solution of the BVP is

u(ρ, ϕ) =
2

3
P0(ϕ)−

2

3

ρ2

22
P2(ϕ) =

2

3
+

ρ2

12
− ρ2

4
cos2 ϕ .

Exercise 20. Solve the following Dirichlet problem in a hemisphere
uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < 1, 0 < ϕ < (π/2)

u(1, ϕ) = 100 0 < ϕ < (π/2)
u(ρ, π/2) = 0 0 < ρ < 1 .

In this problem the domain is given by 0 < ρ < 1, 0 < ϕ < (π/2) and the bounded solutions with
separated variables have the form un(ρ, ϕ) = ρnPn(cosϕ) with n = 0, 1, 2, 2, · · · and satisfy
un(ρ, π/2) = 0. This implies that n must be an odd integer. The series representation of the
general solution is

u(ρ, ϕ) =
∞∑
k=0

c2k+1ρ
2k+1P2k+1(cosϕ) .

The nonhomogeneous condition implies that 100 =
∞∑
k=0

c2k+1P2k+1(cosϕ) for 0 < ϕ < (π/2).

Equivalently

100 =
∞∑
k=0

c2k+1P2k+1(t) ∀t ∈ [0, 1]

(odd Legendre series of 100). Therefore

c2k+1 = (4k + 3)

∫ 1

0

100P2k+1(t)dt = 100[P2k(0)− P2k+2(0)] = 100
(−1)k(4k + 3) (2k)!

2k+1(k + 1) (k!)2

The solution of the BVP is

u(ρ, ϕ) = 100
∞∑
k=0

(−1)k(4k + 3) (2k)!

2k+1(k + 1) (k!)2
ρ2k+1 P2k+1(cosϕ)
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Exercise 21. Solve the following Dirichlet problem in a hemisphere


uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < 1, 0 < ϕ < (π/2)

u(1, ϕ) = cosϕ 0 < ϕ < (π/2)
u(ρ, π/2) = 0 0 < ρ < 1 .

Exercise 22. Solve the following Dirichlet problem in a spherical shell


uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 1 < ρ < 2, 0 < ϕ < π

u(1, ϕ) = 50 0 < ϕ < π
u(2, ϕ) = 100 0 < ϕ < π .

Exercise 23. Solve the following Dirichlet problem in a spherical shell


uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 1 < ρ < 2, 0 < ϕ < π

u(1, ϕ) = cosϕ 0 < ϕ < π
u(2, ϕ) = sin2 ϕ 0 < ϕ < π .

In this problem the domain is given by 1 < ρ < 1, 0 < ϕ < π and the bounded solutions with
separated variables have the form un(ρ, ϕ) = ρnPn(cosϕ) and un(ρ, ϕ) = ρ−(n+1)Pn(cosϕ) with
n = 0, 1, 2, 2, · · · . The series representation of the general solution is

u(ρ, ϕ) =
∞∑
n=0

(
anρ

n + bnρ
−(n+1)

)
Pn(cosϕ) .

The nonhomogeneous condition gives

u(1, ϕ) = cosϕ =
∞∑
n=0

(an + bn)Pn(cosϕ)

u(2, ϕ) = sin2 ϕ =
∞∑
n=0

(
2nan +

bn
2n+1

)
Pn(cosϕ)

Equivalently

t =
∞∑
n=0

(an + bn)Pn(t)

1− t2 =
∞∑
n=0

(
2nan +

bn
2n+1

)
Pn(t)

Since the Legendre series of t and 1− t2 are

t = P1(t), and 1− t2 =
2

3
P0(t)−

2

3
P2(t) ,
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it follows that the coefficients an’s and bn’s satisfy

an + bn = 0, 2nan +
bn
2n+1

= 0 for n ̸= 0, 1, 2 ;

a0 + b0 = 0, a0 +
b0
2

=
2

3
;

a1 + b1 = 1, 2a1 +
b1
4

= 0 ;

a2 + b2 = 0, 4a2 +
b2
8

= −2

3
;

Solving these systems gives

a0 = −b0 =
4

3
, a1 = −1

7
, b1 =

8

7
, a2 = −b2 =

−16

99
,

and an = bn = 0 for n ≥ 3. The solution of the BVP is

u(ρ, ϕ) =
4

3

(
1− 1

ρ

)
− 1

7

(
ρ− 8

ρ2

)
P1(cosϕ)−

16

99

(
ρ2 − 1

ρ3

)
P2(cosϕ) .

Exercise 24. Find the gravitational potential at any point outside the surface of the earth
knowing that the radius of the earth is 6400 km and that the gravitational potential on the
Earth surface is given by

f(ϕ) =

{
200− cosϕ for 0 < ϕ < (π/2),
200 for (π/2) < ϕ < π.

(This is an exterior Dirichlet problem)

The gravitational potential V (ρ, ϕ) satisfies the BVP

△V (ρ, ϕ) = 0 for ρ > R, 0 < ϕ < π
V (R, ϕ) = f(ϕ) lim

ρ→∞
V (ρ, ϕ) = 0

where R = 6400 is the Earth radius. We know that the solutions of△V (ρ, ϕ) = 0 are ρnPn(cosϕ)
and ρ−(n+1)Pn(cosϕ). Since lim

ρ→∞
ρn = ∞, we seek a sulution in the form

V (ρ, ϕ) =
∞∑
n=0

cnρ
−(n+1)Pn(cosϕ) .

The nonhomogeneous condition implies

f(ϕ) =
∞∑
n=0

cn
R(n+1)

Pn(cosϕ)

and so

cn
R(n+1)

=
2n+ 1

2

∫ 1

−1

f(arccos t)Pn(t)dt =
2n+ 1

2

[∫ 1

−1

200Pn(t)dt−
∫ 1

0

tPn(t)dt

]
For n = 0 we get

c0
R

=
1

2

[
400−

∫ 1

0

tdt

]
=

799

4
.
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For n ≥ 1

cn
R(n+1)

= −1

2

∫ 1

0

(2n+ 1)tPn(t)dt

= −1

2

∫ 1

0

[(n+ 1)Pn+1(t) + nPn−1(t)] dt

= −1

2

[
n+ 1

2n+ 3
(Pn(0)− Pn+2(0)) +

n

2n− 1
(Pn−2(0)− Pn(0))

]
It follows that codd = 0 and for n = 2k,

c2k =

[
(2k + 1)P2k(0)

(8k + 6)(4k − 1)
+

(2k + 1)P2k+2(0)

8k + 6
− kP2k−2(0)

4k − 1

]
R(2k+1) =

The gravitational potential is

V (ρ, ϕ) =
799

4

R

ρ
+

∞∑
k=1

[
(2k + 1)P2k(0)

(8k + 6)(4k − 1)
+

(2k + 1)P2k+2(0)

8k + 6
− kP2k−2(0)

4k − 1

] (
R

ρ

)(2k+1)

P2k(cosϕ) .

Exercise 25. The sun has a diameter of 1.4× 106 km. If the temperature on the sun’s surface
is 5, 0000 C, find the approximate temperature on the following planets.

Planet Mean distance from sun
(millions of kilometers)

Mercury 57.9
Venus 108.2
Earth 149.7
Mars 228.1
Jupiter 778.6
Saturn 1429.0
Uranus 2839.6
Neptune 4491.6
Pluto 5880.2


