CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

1. Exercises

In Exercises 1 to 5, classify the PDE as either linear or nonlinear and give its order. Exercise 1. $u_{xx} + u_{yy} = e^u$

Second order nonlinear.

Exercise 2. $3x^2u_x - 2(\ln y)u_y + \frac{3}{2x-1}u = 5$ Exercise 3. $u_{xy} = 1$ Second order linear. Exercise 4. $(u_x)^2 - 5u_y = 0$ Exercise 5. $u_{tt} - 2u_{xxxx} = \cos t$ Fourth order linear.

In Exercises 6 to 10, classify each second order linear PDE with constant coefficients as either elliptic, parabolic, or hyperbolic in the plane \mathbb{R}^2 . Exercise 6. $u_{xy} = 0$

Exercise 7. $u_{xx} - 2u_{xy} + 2u_{yy} + 5u_x - 12u_y + \sqrt{2}u = 0$ The discriminant is $\mathbb{D} = 2 - (-2)^2 = -2$ the pde is hyperbolic.

Exercise 8. $u_{xx} + 4u_{xy} + u_{yy} - 21u_y = \cos x$

Exercise 9. $2u_{xx} + 2\sqrt{2}u_{xy} + u_{yy} = e^{xy}$

The discriminant is $\mathbb{D} = 2 - (2\sqrt{2})^2 = -6$ the pde is hyperbolic.

Exercise 10. $-u_{xx} + u_{xy} - u_{yy} + 3u = x^2$

In Exercises 11 to 13, find the regions in the (x, y)-plane where the second order PDE (with variable coefficients) is elliptic; parabolic; and hyperbolic. Exercise 11. $x^2 u_{xx} + u_{yy} = 0$

The discriminant is $\mathbb{D}(x,y) = x^2$ the pde is elliptic for $x \neq 0$ and parabolic for x = 0.

Exercise 12.
$$\sqrt{x^2 + y^2}u_{xx} + 2u_{xy} + \sqrt{x^2 + y^2}u_{yy} + xu_x + yu_y = 0$$

Exercise 13. $u_{xx} + 2yu_{xy} + xu_{yy} - \cos(xy)u_y = 1$

The discriminant is $\mathbb{D}(x, y) = x - 4y^2$ the pde is elliptic for $x > 4y^2$ and parabolic for $x = 4y^2$ and hyperbolic for $x < 4y^2$.

Exercise 14. Verify that the functions $(x+1)e^{-t}$, $e^{-2x}\sin t$ and xt are, respectively solutions of the nonhomogeneous equations

$$Hu = -e^{-t}(x+1), \quad Hu = e^{-2x}(4\sin t + \cos t), \text{ and } Hu = x$$

where *H* is the 1-D heat operator $H = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$

Date: January, 2021.

Find a solution of the PDE

$$Hu = \sqrt{2}x + \pi e^{-2x} (4\sin t + \cos t) + e^{-t} (x+1)$$

Exercise 15. Verify that the functions $x \cos(x-t)$ and $\sin(x+t) + \cos(\sqrt{2}t)$ are, respectively solutions of the nonhomogeneous equations

$$\Box u = 2\sin(x-t),$$
 and $\Box u = -2\cos(\sqrt{2}t)$

where \Box is the 1-D wave operator $\Box = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$

Find a solution of the PDE

$$\Box u = -\sin(x-t) + \pi\cos(\sqrt{2}t)$$

Let $v(x,t) = x\cos(x-t)$. Then $v_{tt} = -x\cos(x-t)$, and $v_{xx} = -2\sin(x-t) - x\cos(x-t)$. Hence

$$\Box v = (-x\cos(x-t)) - (-2\sin(x-t) - x\cos(x-t)) = 2\sin(x-t)$$

Let $w(x,t) = \sin(x+t) + \cos(\sqrt{2}t)$. Then $w_{tt} = -(\sin(x+t) + 2\cos(\sqrt{2}t))$, and $w_{xx} = -\sin(x+t)$. Hence

$$\Box w = -(\sin(x+t) + 2\cos(\sqrt{2}t)) + \sin(x+t) = -2\cos(\sqrt{2}t).$$

It follows from the superposition principle that the function

$$u(x,t) = -\frac{v(x,t) + \pi w(x,t)}{2} = -\frac{x\cos(x-t) + \pi\sin(x+t) + \pi\cos(\sqrt{2}t)}{2}$$

satisfies the equation $\Box u = -\sin(x-t) + \pi\cos(\sqrt{2}t)$.

Exercise 16. Verify that the functions r^2 , $r^2 \cos(2\theta)$ and $\sin(3\theta)$ are, respectively solutions of the PDEs

$$\Delta u = 4$$
, $\Delta u = 0$, and $\Delta u = -\frac{9}{r^2}\sin(3\theta)$

where Δ is the 2-D Laplace operator in polar coordinates $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}$

Find a solution of the PDE

$$\Delta u = -1 - \frac{\sin(3\theta)}{r^2}$$

In Exercises 17 to 20, decompose the given BVP into simpler BVPs in such a way that only one nonhomogeneous condition appears in each sub BVP. **Exercise 17.**

$$u_t - ku_{xx} = \cos t \qquad 0 < x < L, \quad t > 0$$

$$u(x,0) = 3x \qquad 0 < x < L$$

$$u(0,t) = 0, \quad u(L,t) = 20 \qquad t > 0$$

Seek a solution u in the form $u(x,t) = v(x,t) + w^1(x,t) + w^2(x,t)$ where v, w^1, w^2 solve the following BVP:

$$\begin{cases} v_t - kv_{xx} = \cos t \\ v(x,0) = 0 \\ v(0,t) = 0, v(L,t) = 0 \end{cases} \begin{cases} w_t^1 - kw_{xx}^1 = 0 \\ w^1(x,0) = 3x \\ w^1(0,t) = 0, w^1(L,t) = 0 \end{cases} \begin{cases} w_t^2 - kw_{xx}^2 = 0 \\ w^2(x,0) = 0 \\ w^2(0,t) = 0, w^2(L,t) = 20 \end{cases}$$

Exercise 18.

$$\begin{array}{ll} u_{tt} = 2u_{xx} + 2\sin x\cos t & 0 < x < \pi, \ t > 0 \\ u(x,0) = \sin(3x), \ u_t(x,0) = 1 & 0 < x < \pi \\ u(0,t) = \sin t, \ u(\pi,t) = \cos t & t > 0 \end{array}$$

3

Exercise 19.

$$\begin{array}{ll} u_{xx} + u_{yy} = 5\cos x \sin y & 0 < x < \pi, \ 0 < y < \pi \\ u(x,0) = 1, \ u_y(x,\pi) = u(x,\pi) & 0 < x < \pi \\ u(0,y) = -1, \ u_x(\pi,y) = -3u(\pi,y) & 0 < y < \pi \end{array}$$

We can find the solution u as $u = u^1 + u^2 + u^3$ with

$$\begin{cases} u_{xx}^{1} + u_{yy}^{1} = 5\cos x \sin y \\ u^{1}(x,0) = 0, \quad u_{y}^{1}(x,\pi) = u^{1}(x,\pi) \\ u^{1}(0,y) = 0, \quad u_{x}^{1}(\pi,y) = -3u^{1}(\pi,y) \end{cases}$$
$$\begin{pmatrix} u_{xx}^{2} + u_{yy}^{2} = 0 \\ u^{2}(x,0) = 1, \quad u_{y}^{2}(x,\pi) = u^{2}(x,\pi) \\ u^{2}(0,y) = 0, \quad u_{x}^{2}(\pi,y) = -3u^{2}(\pi,y) \end{cases} \begin{cases} u_{xx}^{3} + u_{yy}^{3} = 0 \\ u^{3}(x,0) = 0, \quad u_{y}^{3}(x,\pi) = u^{3}(x,\pi) \\ u^{3}(0,y) = -1, \quad u_{x}^{3}(\pi,y) = -3u^{3}(\pi,y) \end{cases}$$

Exercise 20.

$$\begin{aligned} u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} &= 0 & 0 < r < 1, \ 0 < \theta < \pi \\ u(r,0) &= 10, \ u(r,\pi) = 20, & 0 < r < 1 \\ u_r(1,\theta) &= 5u(1,\theta) & 0 < \theta < \pi \end{aligned}$$

Exercise 21. Write the BVP for the steady-state temperature in a plate in the form of 30° -sector of a ring with radii 1 and 2. One of the radial edges is kept at temperature 10° C and on the other radial edge, the gradient of the temperature is numerically equal to the temperature. The outer circular edge is kept at temperature 100° C, while the inner circular edge is insulated.

Decompose the BVP into Sub-BVPs that contain only one nonhomogeneous condition.

The solution $u(r,\theta)$ defined for 1 < r < 2, $0 < \theta < \pi/6$ can be written as $u(r,\theta) = v(r,\theta) + w(r,\theta)$ where v and w satisfy the following BVPs

$$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = 0 \\ v(2,\theta) = 100 \quad v_r(1,\theta) = 0 \\ v(r,0) = 0 \\ \end{bmatrix} \begin{cases} w_{rr} + \frac{1}{r}w_r + \frac{1}{r^2}w_{\theta\theta} = 0 \\ w(2,\theta) = 0 \\ w(r,0) = 10 \end{cases}$$