CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

1. Exercises

In Exercises 1 to 5, classify the PDE as either linear or nonlinear and give its order.
Exercise 1. $u_{x x}+u_{y y}=\mathrm{e}^{u}$
Second order nonlinear.
Exercise 2. $3 x^{2} u_{x}-2(\ln y) u_{y}+\frac{3}{2 x-1} u=5$
Exercise 3. $u_{x y}=1$
Second order linear.
Exercise 4. $\left(u_{x}\right)^{2}-5 u_{y}=0$
Exercise 5. $u_{t t}-2 u_{x x x x}=\cos t$
Fourth order linear.
In Exercises 6 to 10, classify each second order linear PDE with constant coefficients as either elliptic, parabolic, or hyperbolic in the plane \mathbb{R}^{2}.
Exercise 6. $u_{x y}=0$
Exercise 7. $u_{x x}-2 u_{x y}+2 u_{y y}+5 u_{x}-12 u_{y}+\sqrt{2} u=0$
The discriminant is $\mathbb{D}=2-(-2)^{2}=-2$ the pde is hyperbolic.
Exercise 8. $u_{x x}+4 u_{x y}+u_{y y}-21 u_{y}=\cos x$
Exercise 9. $2 u_{x x}+2 \sqrt{2} u_{x y}+u_{y y}=\mathrm{e}^{x y}$
The discriminant is $\mathbb{D}=2-(2 \sqrt{2})^{2}=-6$ the pde is hyperbolic.
Exercise 10. $-u_{x x}+u_{x y}-u_{y y}+3 u=x^{2}$
In Exercises 11 to 13, find the regions in the (x, y)-plane where the second order PDE (with variable coefficients) is elliptic; parabolic; and hyperbolic.
Exercise 11. $x^{2} u_{x x}+u_{y y}=0$
The discriminant is $\mathbb{D}(x, y)=x^{2}$ the pde is elliptic for $x \neq 0$ and parabolic for $x=0$.
Exercise 12. $\sqrt{x^{2}+y^{2}} u_{x x}+2 u_{x y}+\sqrt{x^{2}+y^{2}} u_{y y}+x u_{x}+y u_{y}=0$
Exercise 13. $u_{x x}+2 y u_{x y}+x u_{y y}-\cos (x y) u_{y}=1$
The discriminant is $\mathbb{D}(x, y)=x-4 y^{2}$ the pde is elliptic for $x>4 y^{2}$ and parabolic for $x=4 y^{2}$ and hyperbolic for $x<4 y^{2}$.
Exercise 14. Verify that the functions $(x+1) \mathrm{e}^{-t}, \mathrm{e}^{-2 x} \sin t$ and $x t$ are, respectively solutions of the nonhomogeneous equations

$$
H u=-\mathrm{e}^{-t}(x+1), \quad H u=\mathrm{e}^{-2 x}(4 \sin t+\cos t), \quad \text { and } \quad H u=x
$$

where H is the 1-D heat operator $H=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$

Find a solution of the PDE

$$
H u=\sqrt{2} x+\pi \mathrm{e}^{-2 x}(4 \sin t+\cos t)+\mathrm{e}^{-t}(x+1)
$$

Exercise 15. Verify that the functions $x \cos (x-t)$ and $\sin (x+t)+\cos (\sqrt{2} t)$ are, respectively solutions of the nonhomogeneous equations

$$
\square u=2 \sin (x-t), \quad \text { and } \quad \square u=-2 \cos (\sqrt{2} t)
$$

where \square is the 1-D wave operator $\square=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}$
Find a solution of the PDE

$$
\square u=-\sin (x-t)+\pi \cos (\sqrt{2} t)
$$

Let $v(x, t)=x \cos (x-t)$. Then $v_{t t}=-x \cos (x-t)$, and $v_{x x}=-2 \sin (x-t)-x \cos (x-t)$. Hence

$$
\square v=(-x \cos (x-t))-(-2 \sin (x-t)-x \cos (x-t))=2 \sin (x-t) .
$$

Let $w(x, t)=\sin (x+t)+\cos (\sqrt{2} t)$. Then $w_{t t}=-(\sin (x+t)+2 \cos (\sqrt{2} t))$, and $w_{x x}=-\sin (x+t)$. Hence

$$
\square w=-(\sin (x+t)+2 \cos (\sqrt{2} t))+\sin (x+t)=-2 \cos (\sqrt{2} t)
$$

It follows from the superposition principle that the function

$$
u(x, t)=-\frac{v(x, t)+\pi w(x, t)}{2}=-\frac{x \cos (x-t)+\pi \sin (x+t)+\pi \cos (\sqrt{2} t)}{2}
$$

satisfies the equation $\square u=-\sin (x-t)+\pi \cos (\sqrt{2} t)$.
Exercise 16. Verify that the functions $r^{2}, r^{2} \cos (2 \theta)$ and $\sin (3 \theta)$ are, respectively solutions of the PDEs

$$
\Delta u=4, \quad \Delta u=0, \quad \text { and } \quad \Delta u=-\frac{9}{r^{2}} \sin (3 \theta)
$$

where Δ is the 2-D Laplace operator in polar coordinates $\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$
Find a solution of the PDE

$$
\Delta u=-1-\frac{\sin (3 \theta)}{r^{2}}
$$

In Exercises 17 to 20, decompose the given BVP into simpler BVPs in such a way that only one nonhomogeneous condition appears in each sub BVP.

Exercise 17.

$$
\begin{array}{ll}
u_{t}-k u_{x x}=\cos t & 0<x<L, \quad t>0 \\
u(x, 0)=3 x & 0<x<L \\
u(0, t)=0, \quad u(L, t)=20 & t>0
\end{array}
$$

Seek a solution u in the form $u(x, t)=v(x, t)+w^{1}(x, t)+w^{2}(x, t)$ where v, w^{1}, w^{2} solve the following BVP:

$$
\left\{\begin{array} { l }
{ v _ { t } - k v _ { x x } = \operatorname { c o s } t } \\
{ v (x , 0) = 0 } \\
{ v (0 , t) = 0 , \quad v (L , t) = 0 }
\end{array} \left\{\begin{array} { l }
{ w _ { t } ^ { 1 } - k w _ { x x } ^ { 1 } = 0 } \\
{ w ^ { 1 } (x , 0) = 3 x } \\
{ w ^ { 1 } (0 , t) = 0 , \quad w ^ { 1 } (L , t) = 0 }
\end{array} \quad \left\{\begin{array}{l}
w_{t}^{2}-k w_{x x}^{2}=0 \\
w^{2}(x, 0)=0 \\
w^{2}(0, t)=0, \quad w^{2}(L, t)=20
\end{array}\right.\right.\right.
$$

Exercise 18.

$$
\begin{array}{ll}
u_{t t}=2 u_{x x}+2 \sin x \cos t & 0<x<\pi, \quad t>0 \\
u(x, 0)=\sin (3 x), \quad u_{t}(x, 0)=1 & 0<x<\pi \\
u(0, t)=\sin t, \quad u(\pi, t)=\cos t & t>0
\end{array}
$$

Exercise 19.

$$
\begin{array}{ll}
u_{x x}+u_{y y}=5 \cos x \sin y & 0<x<\pi, \quad 0<y<\pi \\
u(x, 0)=1, \quad u_{y}(x, \pi)=u(x, \pi) & 0<x<\pi \\
u(0, y)=-1, \quad u_{x}(\pi, y)=-3 u(\pi, y) & 0<y<\pi
\end{array}
$$

We can find the solution u as $u=u^{1}+u^{2}+u^{3}$ with

$$
\begin{gathered}
\left\{\begin{array}{l}
u_{x x}^{1}+u_{y y}^{1}=5 \cos x \sin y \\
u^{1}(x, 0)=0, \quad u_{y}^{1}(x, \pi)=u^{1}(x, \pi) \\
u^{1}(0, y)=0, u_{x}^{1}(\pi, y)=-3 u^{1}(\pi, y)
\end{array}\right. \\
\left\{\begin{array} { l }
{ u _ { x x } ^ { 2 } + u _ { y y } ^ { 2 } = 0 } \\
{ u ^ { 2 } (x , 0) = 1 , u _ { y } ^ { 2 } (x , \pi) = u ^ { 2 } (x , \pi) } \\
{ u ^ { 2 } (0 , y) = 0 , u _ { x } ^ { 2 } (\pi , y) = - 3 u ^ { 2 } (\pi , y) }
\end{array} \left\{\begin{array}{l}
u_{x x}^{3}+u_{y y}^{3}=0 \\
u^{3}(x, 0)=0, u_{y}^{3}(x, \pi)=u^{3}(x, \pi) \\
u^{3}(0, y)=-1, u_{x}^{3}(\pi, y)=-3 u^{3}(\pi, y)
\end{array}\right.\right.
\end{gathered}
$$

Exercise 20.

$$
\begin{array}{ll}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 & 0<r<1,0<\theta<\pi \\
u(r, 0)=10, u(r, \pi)=20, & 0<r<1 \\
u_{r}(1, \theta)=5 u(1, \theta) & 0<\theta<\pi
\end{array}
$$

Exercise 21. Write the BVP for the steady-state temperature in a plate in the form of 30^{0} sector of a ring with radii 1 and 2 . One of the radial edges is kept at temperature $10^{\circ} \mathrm{C}$ and on the other radial edge, the gradient of the temperature is numerically equal to the temperature. The outer circular edge is kept at temperature $100^{\circ} \mathrm{C}$, while the inner circular edge is insulated.

Decompose the BVP into Sub-BVPs that contain only one nonhomogeneous condition.

The solution $u(r, \theta)$ defined for $1<r<2, \quad 0<\theta<\pi / 6$ can be written as $u(r, \theta)=v(r, \theta)+$ $w(r, \theta)$ where v and w satisfy the following BVPs

$$
\left\{\begin{array} { l }
{ v _ { r r } + \frac { 1 } { r } v _ { r } + \frac { 1 } { r ^ { 2 } } v _ { \theta \theta } = 0 } \\
{ v (2 , \theta) = 1 0 0 \quad v _ { r } (1 , \theta) = 0 } \\
{ v (r , 0) = 0 }
\end{array} \quad \left\{\begin{array}{l}
w_{r r}+\frac{1}{r} w_{r}+\frac{1}{r^{2}} w_{\theta \theta}=0 \\
w(2, \theta)=0 \\
w(r, 0)=10
\end{array}\right.\right.
$$

