THE METHOD OF SEPARATION OF VARIABLES

EXERCISES

Use the method of separation of variables to solve the following boundary value problems. Exercise 1.

$$u_t(x,t) = 3u_{xx}(x,t) \qquad 0 < x < 2\pi, \ t > 0$$

$$u(0,t) = u(2\pi,t) = 0 \qquad t > 0$$

$$u(x,0) = \sin\frac{x}{2} - \sin(3x) \qquad 0 < x < 2\pi$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_t(x,t) = 3u_{xx}(x,t) \\ u(0,t) = u(2\pi,t) = 0 \end{cases}$$
 NHP: $u(x,0) = \sin\frac{x}{2} - \sin(3x)$

• ODE problems for solutions with separated variables of HP. Suppose u(x,t) = X(x)T(t) is a nontrivial solution of HP. Then X(x) and T(t) solve the following ODE problems:

$$\begin{cases} X''(t) + \lambda X(t) = 0\\ X(0) = X(2\pi) = 0 \end{cases} \qquad T'(t) + 3\lambda T(t) = 0$$

where λ is the separation constant.

• Eigenvalues and eigenfunctions of the X-problem.

Eigenvalues:
$$\lambda_n = \frac{n^2}{4}$$
; eigenfunctions $X_n(x) = \sin \frac{nx}{2}$, with $n \in \mathbb{Z}^+$.

- For each eigenvalue λ_n , the corresponding *T*-problem has solutions generated by $T_n(t) = e^{-3n^2t/4}$.
- Solutions with separated variables of HP:

$$u_n(x,t) = e^{-3n^2t/4} \sin \frac{nx}{2} \qquad n \in \mathbb{Z}^+$$

• Superposition gives more general solutions of HP

$$u(x,t) = C_1 e^{-3t/4} \sin \frac{x}{2} + C_2 e^{-3t} \sin x + \dots + C_N e^{-3N^2 t/4} \sin \frac{Nx}{2}$$

• Use NHP to find the constants C_1, \dots, C_N so that the solution solve the original BVP (HP and NHP).

$$u(x,0) = \sin\frac{x}{2} - \sin(3x) = C_1 \sin\frac{x}{2} + C_2 \sin x + \dots + C_N \sin\frac{Nx}{2}$$

By identifying coefficients we find $C_j = 0$ for $j \neq 1, 6$, $C_1 = 1$, and $C_6 = -1$. • The solution of the BVP is

$$\frac{-3t}{4}$$

$$u(x,t) = e^{-3t/4} \sin \frac{x}{2} - e^{-27t} \sin(3x)$$

Exercise 2.

$$\begin{array}{ll} u_t(x,t) = u_{xx}(x,t) & 0 < x < 2\pi \,, \ t > 0 \\ u_x(0,t) = u_x(2\pi,t) = 0 & t > 0 \\ u(x,0) = 100 - 3\cos\frac{5x}{4} & 0 < x < 2\pi \end{array}$$

Date: February, 2021.

$$\begin{aligned} u_t(x,t) &= 2u_{xx}(x,t) & 0 < x < \pi, \ t > 0 \\ u(0,t) &= u_x(\pi,t) = 0 & t > 0 \\ u(x,0) &= 50 \sin \frac{x}{2} - 25 \sin \frac{7x}{2} + 10 \sin \frac{11x}{2} & 0 < x < \pi \end{aligned}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_t(x,t) = 2u_{xx}(x,t) \\ u(0,t) = 0, \ u_x(\pi,t) = 0 \end{cases}$$
 NHP: $u(x,0) = 50\sin\frac{x}{2} - 25\sin\frac{7x}{2} + 10\sin\frac{11x}{2}$

• ODE problems for solutions with separated variables of HP. Suppose u(x,t) = X(x)T(t) is a nontrivial solution of HP. Then X(x) and T(t) solve the following ODE problems:

$$\begin{cases} X''(t) + \lambda X(t) = 0\\ X(0) = 0, \ X'(\pi) = 0 \end{cases} \qquad T'(t) + 2\lambda T(t) = 0$$

where λ is the separation constant.

• Eigenvalues and eigenfunctions of the X-problem.

Eigenvalues: $\lambda_n = \frac{(2n+1)^2}{4}$; eigenfunctions $X_n(x) = \sin \frac{(2n+1)x}{2}$, with $n = 0, 1, 2, 3, \cdots$. • For each eigenvalue λ_n , the corresponding *T*-problem has solutions generated by $T_n(t) =$

- For each eigenvalue λ_n , the corresponding T-problem has solutions generated by $T_n(t) = e^{-(2n+1)^2 t/2}$.
- Solutions with separated variables of HP:

$$u_n(x,t) = e^{-(2n+1)^2 t/2} \sin \frac{nx}{2} \qquad n \in \mathbb{Z}^+ \cup \{0\}$$

• Superposition gives more general solutions of HP

$$u(x,t) = \sum_{j=0}^{N} C_j e^{-(2j+1)^2 t/2} \sin \frac{(2j+1)x}{2}$$

• Use NHP to find the constants C_1, \dots, C_N so that the solution solve the original BVP (HP and NHP).

$$u(x,0) = 50\sin\frac{x}{2} - 25\sin\frac{7x}{2} + 10\sin\frac{11x}{2} = \sum_{j=0}^{N} C_j \sin\frac{(2j+1)x}{2}$$

By identifying coefficients we find $C_j = 0$ for $j \neq 0, 3, 5$; $C_0 = 50, C_3 = -25$, and $C_5 = 10$.

• The solution of the BVP is

$$u(x,t) = 50e^{-t/2}\sin\frac{x}{2} - 25e^{-49t/2}\sin\frac{7x}{2} + 10e^{-121t/2}\sin\frac{11x}{2}$$

Exercise 4.

$$\begin{array}{ll} u_{tt}(x,t) = \sqrt{2}u_{xx}(x,t) & 0 < x < 3\pi, \ t > 0 \\ u(0,t) = u(3\pi,t) = 0 & t > 0 \\ u_t(x,0) = 0 & 0 < x < 3\pi \\ u(x,0) = f(x) & 0 < x < 3\pi \end{array}$$

where

$$f(x) = \sin\frac{x}{3} - \frac{1}{2}\sin(2x) + \frac{1}{5}\sin\frac{7x}{3}$$

Exercise 5.

 $\begin{array}{ll} u_{tt}(x,t) = 4u_{xx}(x,t) & \quad 0 < x < 3\pi \,, \ t > 0 \\ u(0,t) = u(3\pi,t) = 0 & \quad t > 0 \\ u(x,0) = 0 & \quad 0 < x < 3\pi \\ u_t(x,0) = g(x) & \quad 0 < x < 3\pi \end{array}$

where

$$g(x) = \sin\frac{2x}{3} + \frac{1}{2}\sin\frac{5x}{3}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_{tt}(x,t) = 4u_{xx}(x,t) \\ u(0,t) = u(3\pi,t) = 0 \\ u(x,0) = 0 \end{cases}$$
 NHP: $u_t(x,0) = g(x)$

• ODE problems for solutions with separated variables of HP. Suppose u(x,t) = X(x)T(t) is a nontrivial solution of HP. Then X(x) and T(t) solve the following ODE problems:

$$\begin{cases} X''(t) + \lambda X(t) = 0 \\ X(0) = 0, \ X(3\pi) = 0 \end{cases} \begin{cases} T'(t) + 4\lambda T(t) = 0 \\ T(0) = 0 \end{cases}$$

where λ is the separation constant.

• Eigenvalues and eigenfunctions of the X-problem.

Eigenvalues: $\lambda_j = \frac{j^2}{9}$; eigenfunctions $X_j(x) = \sin \frac{jx}{3}$, with $j = 1, 2, 3, \cdots$. • For each eigenvalue λ_j , the corresponding *T*-problem has solutions generated by $T_n(t) = \sum_{j=1}^{n} \frac{jx}{2}$.

- For each eigenvalue λ_j , the corresponding *T*-problem has solutions generated by $T_n(t) = \sin \frac{2jt}{3}$.
- Solutions with separated variables of HP:

$$u_j(x,t) = \sin \frac{2jt}{3} \sin \frac{jx}{3} \qquad j \in \mathbb{Z}^+$$

• Superposition gives more general solutions of HP

$$u(x,t) = \sum_{j=0}^{N} C_j \sin \frac{2jt}{3} \sin \frac{jx}{3}$$

• Use NHP to find the constants C_1, \dots, C_N so that the solution solve the original BVP (HP and NHP). We have

$$u_t(x,t) = \sum_{j=0}^{N} \frac{2j}{3} C_j \cos \frac{2jt}{3} \sin \frac{jx}{3}$$

and

$$u_t(x,0) = \sum_{j=0}^N \frac{2j}{3} C_j \sin \frac{jx}{3} = \sin \frac{2x}{3} + \frac{1}{2} \sin \frac{5x}{3}$$

By identifying coefficients we find $C_j = 0$ for $j \neq 2$, 5; $C_2 = 3/4$ and $C_5 = 3/20$. • The solution of the BVP is

$$u(x,t) = \frac{3}{4}\sin\frac{4t}{3}\sin\frac{2x}{3} + \frac{3}{20}\sin\frac{10t}{3}\sin\frac{5x}{3}$$

Exercise 6.

$$u_{tt}(x,t) = u_{xx}(x,t) \qquad 0 < x < 1, \quad t > 0$$

$$u(0,t) = u_x(1,t) = 0 \qquad t > 0$$

$$u(x,0) = \sin\frac{\pi x}{2} \qquad 0 < x < 1$$

$$u_t(x,0) = -\sin\frac{7\pi x}{2} \qquad 0 < x < 1$$

Exercise 7.

$$\begin{array}{ll} u_{tt}(x,t) = u_{xx}(x,t) & 0 < x < 2 \,, \quad t > 0 \\ u_x(0,t) = u_x(2,t) = 0 & t > 0 \\ u(x,0) = 0 & 0 < x < 2 \\ u_t(x,0) = 1 - \frac{1}{2}\cos\frac{5\pi x}{2} & 0 < x < 2 \end{array}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_{tt}(x,t) = u_{xx}(x,t) \\ u_x(0,t) = u_x(2,t) = 0 \\ u(x,0) = 0 \end{cases}$$
 NHP: $u_t(x,0) = 1 - \frac{1}{2}\cos\frac{5\pi x}{2}$

• ODE problems for solutions with separated variables of HP. Suppose u(x,t) = X(x)T(t)is a nontrivial solution of HP. Then X(x) and T(t) solve the following ODE problems:

$$\begin{cases} X''(t) + \lambda X(t) = 0 \\ X'(0) = 0, \ X'(2) = 0 \end{cases} \qquad \begin{cases} T'(t) + \lambda T(t) = 0 \\ T(0) = 0 \end{cases}$$

where λ is the separation constant.

• Eigenvalues and eigenfunctions of the X-problem.

$$\lambda_n = \left(\frac{n\pi}{2}\right)^2, \quad X_n(x) = \cos\frac{n\pi x}{2}, \quad n = 0, 1, 2, 3, \cdots$$

- Note that $\lambda_0 = 0$ is an eigenvalue with eigenfunction $X_0(x) = 1$. For each eigenvalue λ_n , the corresponding *T*-problem has solutions generated by $T_n(t) =$ $\sin \frac{n\pi t}{2}$ for $n = 1, 2, 3 \cdots$ and $T_0(t) = t$ for n = 0.
- Solutions with separated variables of HP:

$$u_0(x,t) = t,$$
 $u_n(x,t) = \sin \frac{n\pi t}{2} \cos \frac{n\pi x}{2}$ $n \in \mathbb{Z}^+$

• Superposition gives more general solutions of HP

$$u(x,t) = A_0 t + \sum_{j=1}^{N} C_j \sin \frac{j\pi t}{2} \cos \frac{j\pi x}{2}$$

• Use NHP to find the constants C_1, \dots, C_N so that the solution solve the original BVP (HP and NHP). We have

$$u_t(x,t) = A_0 + \sum_{j=1}^{N} \frac{j\pi}{2} A_j \cos \frac{j\pi t}{3} \cos \frac{j\pi x}{2}$$

and

$$u_t(x,0) = A_0 + \sum_{j=1}^N \frac{j\pi}{2} A_j \cos \frac{j\pi x}{2} = 1 - \frac{1}{2} \cos \frac{5\pi x}{2}$$

By identifying coefficients we find $A_j = 0$ for $j \neq 0$, 5; $A_0 = 1$ and $A_5 = -1/5\pi$.

• The solution of the BVP is

$$u(x,t) = t - \frac{1}{5\pi} \sin \frac{5\pi t}{2} \cos \frac{5\pi x}{2}$$

Exercise 8.

$$\begin{array}{ll} \Delta u(x,y) = 0 & 0 < x < 1, & 0 < y < 2 \\ u(0,y) = u(1,y) = 0 & 0 < y < 2 \\ u(x,0) = \sin(2\pi x), & u(x,2) = \sin(3\pi x) & 0 < x < 1 \end{array}$$

Exercise 9.

$$\begin{aligned} \Delta u(x,y) &= 0 & 0 < x < 1, \quad 0 < y < 2 \\ u(0,y) &= 1 - \cos\frac{\pi y}{2}, \quad u(1,y) = 3\cos\frac{5\pi y}{2} & 0 < y < 2 \\ u_y(x,0) &= u_y(x,2) = 0 & 0 < x < 1 \end{aligned}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_{xx}(x,y) + u_{yy}(x,y) = 0\\ u_y(x,0) = u_y(x,2) = 0 \end{cases} \text{ NHP: } u(0,y) = 1 - \cos\frac{\pi y}{2}, \quad u(1,y) = 3\cos\frac{5\pi y}{2} \end{cases}$$

• ODE problems for solutions with separated variables of HP. Suppose u(x, y) = X(x)Y(y) is a nontrivial solution of HP. Then X(x) and Y(y) solve the following ODE problems:

$$\begin{cases} Y''(y) + \lambda Y(y) = 0\\ Y'(0) = 0, \ Y'(2) = 0 \end{cases} \qquad X''(x) - \lambda X(x) = 0$$

where λ is the separation constant.

• Eigenvalues and eigenfunctions of the Y-problem.

$$\lambda_n = \left(\frac{n\pi}{2}\right)^2, \quad Y_n(y) = \cos\frac{n\pi y}{2}, \quad n = 0, 1, 2, 3, \cdots$$

Note that $\lambda_0 = 0$ is an eigenvalue with eigenfunction $Y_0(y) = 1$.

- For each eigenvalue λ_n ($n \ge 1$), the corresponding X-problem has solutions generated by $X_{1,n}(x) = \sinh \frac{n\pi x}{2}$ and $X_{2,n}(x) = \cosh \frac{n\pi x}{2}$ (note that instead of using hyperbolic trigonometric functions, we could use $e^{\frac{n\pi x}{2}}$ and $e^{-\frac{n\pi x}{2}}$ For the eigenvalue $\lambda_0 = 0$, the corresponding X-problem has solutions generated by $X_{0,1}(x) = 1$ and $X_{0,1}(x) = x$
- Solutions with separated variables of HP:

$$u_{0,1}(x,y) = 1, \quad u_{0,2}(x,y) = x, \quad \text{for } \lambda = 0$$

$$\begin{cases} u_{n,1}(x,y) &= \sinh \frac{n\pi x}{2} \cos \frac{n\pi y}{2}, \\ u_{n,2}(x,y) &= \cosh \frac{n\pi x}{2} \cos \frac{n\pi y}{2} \end{cases} \quad \text{for } \lambda_n = \left(\frac{n\pi}{2}\right)^2 \quad n \in \mathbb{Z}^+$$

• Superposition gives more general solutions of HP

$$u(x,y) = A_0 + A_1 x + \sum_{j=1}^{N} \left(C_j \sinh \frac{j\pi x}{2} + D_j \cosh \frac{j\pi x}{2} \right) \cos \frac{j\pi y}{2}$$

• Use NHP to find the constants so that the solution solve the original BVP (HP and NHP). We get

$$u(0,y) = 1 - \cos\frac{\pi y}{2} = A_0 + \sum_{j=1}^N D_j \cosh\frac{j\pi x}{2} \cos\frac{j\pi y}{2}$$
$$u(1,y) = 3\cos\frac{\pi y}{2} = A_0 + A_1 + \sum_{j=1}^N \left(C_j \sinh\frac{j\pi}{2} + D_j \cosh\frac{j\pi}{2}\right) \cos\frac{j\pi y}{2}$$

and deduce $A_0 = 1$, $A_1 = -1$, $C_j = 0$ for $j \neq 1$, 5, $D_j = 0$ for $j \neq 1$, $D_1 = -1$, $C_1 = \cosh(\pi/2) / \sinh(\pi/2)$, and $C_5 = 3 / \sinh(5\pi/2)$

• The solution of the BVP (after simplification) is

$$u(x,y) = 1 - x + \frac{\sinh\frac{\pi(x-1)}{2}}{\sinh\frac{\pi}{2}}\cos\frac{\pi y}{2} + 3\frac{\sinh\frac{5\pi x}{2}}{\sinh\frac{5\pi}{2}}\cos\frac{5\pi y}{2}$$

Exercise 10. (In polar coordinates)

$$\begin{aligned} \Delta u(r,\theta) &= 0 & 0 < r < 2, \quad 0 \le \theta \le 2\pi \\ u(2,\theta) &= 1 + \cos(3\theta) - 2\sin(5\theta) & 0 \le \theta \le 2\pi \end{aligned}$$

Exercise 11. (In polar coordinates)

$$\begin{aligned} \Delta u(r,\theta) &= 0 & 1 < r < 2, \quad 0 \le \theta \le 2\pi \\ u(1,\theta) &= \sin(3\theta) & 0 \le \theta \le 2\pi \\ u_r(2,\theta) &= \cos(5\theta) & 0 \le \theta \le 2\pi \end{aligned}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_{rr}(r,\theta) + \frac{1}{r}u_r(r,\theta) + \frac{1}{r^2}u_{\theta\theta}(r,\theta) = 0\\ u(r,0) = u(r,2\pi), \quad u_{\theta}(r,0) = u_{\theta}(r,2\pi) \end{cases}$$
 NHP:
$$\begin{cases} u(1,\theta) = \sin(3\theta)\\ u_r(2,\theta) = \cos(5\theta) \end{cases}$$

• ODE problems for solutions with separated variables of HP. Suppose $u(r, \theta) = R(r)\Theta(\theta)$ is a nontrivial solution of HP. Then R(r) and $\Theta(\theta)$ solve the following ODE problems:

$$\begin{cases} \Theta''(\theta) + \lambda \Theta(\theta) = 0 \\ \Theta(0) = \Theta(2\pi) \quad \Theta'(0) = \Theta'(2\pi) \end{cases} \qquad r^2 R''(r) + rR'(r) - \lambda R(r) = 0$$

where λ is the separation constant. Note that the *R*-equation is Cauchy-Euler.

• Eigenvalues and eigenfunctions of the Θ -problem.

Eigenvalue Eigenfunction

$$\lambda_0 = 0$$
 $\Theta_0(\theta) = 1$
 $\lambda_n = n^2 \begin{cases} \Theta_{1,n}(\theta) = \cos(n\theta) \\ \Theta_{2,n}(\theta) = \sin(n\theta) \end{cases}$

Note that for $n \in \mathbb{Z}^+$ there are two independent eigenfunctions $(\cos(n\theta) \text{ and } \cos(n\theta))$ corresponding to the eigenfunction $\lambda_n = n^2$.

• For each eigenvalue, the corresponding *R*-problem has solutions generated by

$$\lambda_0 = 0 \quad \begin{cases} R_{1,0}(r) = 1 \\ R_{2,0}(r) = \ln r \end{cases}$$
$$\lambda_n = n^2 \quad \begin{cases} R_{1,n}(r) = r^n \\ R_{2,n}(r) = r^{-n} \end{cases}$$

• Solutions with separated variables of HP:

$$\lambda_0 = 0 \quad 1, \ln r$$

$$\lambda_n = n^2 \quad r^n \cos(n\theta), \quad r^{-n} \cos(n\theta), \quad r^n \sin(n\theta), \quad r^{-n} \sin(n\theta)$$

• Superposition gives more general solutions of HP

$$u(r,\theta) = P_0 + P_1 \ln r + \sum_{j=1}^N \left(A_j r^j + \frac{B_j}{r^j} \right) \cos(j\theta) + \left(C_j r^j + \frac{D_j}{r^j} \right) \sin(j\theta)$$

• Use NHP to find the constants so that the solution solve the original BVP (HP and NHP). First we compute u_r :

$$u_r(r,\theta) = \frac{P_1}{r} + \sum_{j=1}^N \left(jA_j r^{j-1} - \frac{jB_j}{r^{j+1}} \right) \cos(j\theta) + \left(jC_j r^{j-1} - \frac{jD_j}{r^{j+1}} \right) \sin(j\theta)$$

We have

$$u(1,\theta) = \sin(3\theta) = P_0 + \sum_{j=1}^{N} (A_j + B_j) \cos(j\theta) + (C_j + D_j) \sin(j\theta)$$

$$u_r(2,\theta) = \cos(5\theta) = \frac{P_1}{2} + \sum_{j=1}^N \left(jA_j 2^{j-1} - \frac{jB_j}{2^{j+1}} \right) \cos(j\theta) + \left(jC_j 2^{j-1} - \frac{jD_j}{2^{j+1}} \right) \sin(j\theta)$$

and deduce $P_0 = P_1 = 0$; $A_j = B_j = 0$ for $j \neq 5$; $C_j = D_j = 0$ for $j \neq 3$; $A_5 = \frac{64}{5125}$, $B_5 = -\frac{64}{5125}$, $C_3 = \frac{1}{65}$, $\frac{64}{65}$.

• The solution of the BVP is

$$u(r,\theta) = \frac{64}{6125} \left(r^5 - \frac{1}{r^5} \right) \cos(5\theta) + \frac{1}{65} \left(r^3 + \frac{64}{r^3} \right) \sin(3\theta)$$

Exercise 12.

$$\begin{array}{ll} u_t(x,y,t) = \Delta u(x,y,t) & 0 < x < \pi \ , \ 0 < y < 2\pi \ , \ t > 0 \\ u(x,0,t) = u(x,2\pi,t) = 0 & 0 < x < \pi \ , \ t > 0 \\ u(0,y,t) = u(\pi,y,t) = 0 & 0 < y < 2\pi \ , \ t > 0 \\ u(x,y,0) = \sin x \sin \frac{3y}{2} & 0 < x < \pi \ , \ 0 < y < 2\pi \end{array}$$

Exercise 13.

$$\begin{array}{ll} u_t(x,y,t) = \Delta u(x,y,t) & 0 < x < \pi \,, \, 0 < y < 2\pi \,, \, t > 0 \\ u(x,0,t) = u(x,2\pi,t) = 0 & 0 < x < \pi \,, \, t > 0 \\ u_x(0,y,t) = u_x(\pi,y,t) = 0 & 0 < y < 2\pi \,, \, t > 0 \\ u(x,y,0) = 2\sin 5x \sin \frac{3y}{2} & 0 < x < \pi \,, \, 0 < y < 2\pi \end{array}$$

• Homogeneous and nonhomogeneous parts of the BVP are:

HP:
$$\begin{cases} u_t(x, y, t) = \Delta u(x, y, t) \\ u(x, 0, t) = u(x, 2\pi, t) = 0 \\ u_x(0, y, t) = u_x(\pi, y, t) = 0 \end{cases}$$
 NHP: $u(x, y, 0) = 2\sin 5x \sin \frac{3y}{2}$

• ODE problems for solutions with separated variables of HP. Suppose u(x, y, t) = X(x)Y(y)T(t) is a nontrivial solution of HP. Then X(x), Y(y), and T(t) solve the following ODE problems:

$$\begin{cases} X^{"}(x) + \alpha X(x) = 0\\ X'(0) = X'(\pi) = 0 \end{cases} \begin{cases} Y^{"}(y) + \beta Y(y) = 0\\ Y(0) = Y(2\pi) = 0 \end{cases} T'(t) + \lambda T(t) = 0$$

where α , β , λ are separation constants with $\lambda = \alpha + \beta$.

• Eigenvalues and eigenfunctions of the X and Y problems.

Eigenvalues
$$\begin{array}{c} X \text{-Problem} & Y \text{-Problem} \\ \alpha_n = n^2 & \beta_m = \frac{m^2}{4} \\ n = 0, 1, 2, 3, \cdots & m = 1, 2, 3, \cdots \end{array}$$

Eigenfunctions
$$X_n(x) = \cos(nx)$$
 $Y_m(y) = \sin\frac{my}{2}$

• For each pair of eigenvalues α_n , β_m , the corresponding *T*-problem has solutions generated by

$$T_{n,m}(t) = e^{-(\alpha_n + \beta_m)t}$$

• Solutions with separated variables of HP:

$$u_{n,m}(x,y,t) = e^{-(\alpha_n + \beta_m)t} \cos(nx) \sin \frac{my}{2}$$
 $m = 1, 2, 3, \cdots$ $n = 0, 1, 2, \cdots$

• Superposition gives more general solutions of HP

$$u(x, y, t) = \sum_{n=0}^{N} \sum_{m=1}^{M} A_{n,m} e^{-(\alpha_n + \beta_m)t} \cos(nx) \sin \frac{my}{2}$$

• Use NHP to find the constants so that the solution solve the original BVP (HP and NHP).

$$u(x, y, 0) = 2\sin 5x \sin \frac{3y}{2} = \sum_{n=0}^{N} \sum_{m=1}^{M} A_{n,m} \cos(nx) \sin \frac{my}{2}$$

We obtain $A_{n,m} = 0$ for $(n,m) \neq (5,3)$ and $A_{5,3} = 2$. The solution of the BVP is

$$u(x,y,t) = 2e^{-\frac{109t}{4}}\cos(5x)\sin\frac{3y}{2}$$

Exercise 14.

$$\begin{array}{ll} u_{tt}(x,y,t) = 2\Delta u(x,y,t) & 0 < x < \pi \,, \, 0 < y < 2\pi \,, \, t > 0 \\ u_y(x,0,t) = u_y(x,2\pi,t) = 0 & 0 < x < \pi \,, \, t > 0 \\ u(0,y,t) = u(\pi,y,t) = 0 & 0 < y < 2\pi \,, \, t > 0 \\ u(x,y,0) = \sin 3x \cos \frac{5y}{2} & 0 < x < \pi \,, \, 0 < y < 2\pi \\ u_t(x,y,0) = 0 & 0 < x < \pi \,, \, 0 < y < 2\pi \end{array}$$

In exercises 15 to 17 find all solutions with separated variables. Exercise 15.

$$\begin{array}{ll} u_t(x,t) = 3 u_{xx}(x,t) & \quad 0 < x < 2 \,, \quad t > 0 \\ u(0,t) = 0 & \quad t > 0 \\ u(2,t) = - u_x(2,t) & \quad t > 0 \end{array}$$

If u(x,t) = X(x)T(t) solves the BVP, then X and T satisfy the following ODE problems

$$\begin{cases} X''(x) + \lambda X(x) = 0\\ X(0) = 0, \quad X(2) = -X'(2) \end{cases} \qquad T'(t) + 3\lambda T(t) = 0$$

To find the eigenvalues and eigenfunctions of the X-problem, we consider 3 cases

- Case $\lambda < 0$: Set $\lambda = -\nu^2$ with $\nu > 0$. Then $X(x) = C_1 e^{\nu x} + C_2 e^{-\nu x}$. Then end point condition X(0) = 0 leads to $C_2 = -C_1$ and then if $C_1 \neq 0$ we gete^{4 ν} $= \frac{1-\nu}{1+\nu}$. This last equation has no positive solution ν since $e^{4\nu} > 1$ and for $\nu > 0$ and $\frac{1-\nu}{1+\nu} < 1$. Thus $\lambda < 0$ cannot be an eigenvalue.
- Case $\lambda = 0$: In this case the only solution of the X-problem is trivial.
- Case $\lambda > 0$: Set $\lambda = \nu^2$ with $\nu > 0$. The general solution of the ODE is $X(x) = C_1 \cos(\nu x) + C_2 \sin(\nu x)$. The first boundary condition gives $C_1 = 0$ and the second leads to $C_2 \tan(2\nu) = -C_2\nu$. In order to get nontrivial solution X(x), it is therefore necessary for ν to satisfy the equation $\tan(2\nu) = -\nu$.

FIGURE 1. Solutions of $\tan(2\nu) = -\nu$

Equation $\tan(2\nu) = -\nu$ has infinitely many solutions $0 < \nu_1 < \nu_2 < \nu_3 < \cdots$ with $\nu_n \in \left(\frac{(2n-1)\pi}{4}, \frac{2n\pi}{4}\right)$.

For each eigenvalue $\lambda_n = \nu_n^2$, the solutions of the corresponding *T*-problem are generated by $T_n(t) = e^{-3\nu_n^2 t}$. Therefore, the solutions with separated variable of the BVP are:

$$u_n(x,t) = C e^{-3\nu_n^2 t} \sin(\nu_n x)$$
, where $\nu_n > 0$ solves $\tan(2\nu) = -\nu$

Exercise 16.

$$\begin{aligned} & u_t(x,t) = 3u_{xx}(x,t) & 0 < x < 2, \ t > 0 \\ & u_x(0,t) = 0 & t > 0 \\ & u(2,t) = -u_x(2,t) & t > 0 \end{aligned}$$

Exercise 17.

$$u_t(x,t) = 3u_{xx}(x,t) \qquad 0 < x < 2, \quad t > 0$$

$$u(0,t) = u_x(0,t) \qquad t > 0$$

$$u(2,t) = u_x(2,t) \qquad t > 0$$

If u(x,t) = X(x)T(t) solves the BVP, then X and T satisfy the following ODE problems

$$\begin{cases} X''(x) + \lambda X(x) = 0\\ X(0) = X'(0), \quad X(2) = X'(2) \end{cases} \qquad T'(t) + 3\lambda T(t) = 0$$

To find the eigenvalues and eigenfunctions of the X-problem, we consider 3 cases

• Case $\lambda < 0$: Set $\lambda = -\nu^2$ with $\nu > 0$. Then $X(x) = C_1 e^{\nu x} + C_2 e^{-\nu x}$. We need $X'(x) = \nu C_1 e^{\nu x} - \nu C_2 e^{-\nu x}$. Then end point conditions X(0) = X'(0) and X(2) = X'(2)

lead to the linear system for C_1 , C_2

$$C_1 + C_2 = \nu C_1 - \nu C_2$$

$$C_1 e^{2\nu} + C_2 e^{-2\nu} = \nu C_1 e^{2\nu} - \nu C_2 e^{-2\nu}$$

In order for this system to have a nontrivial solution ν must satisfy $(1 - \nu^2)e^{2\nu} = (1 - \nu^2)e^{-2\nu}$. This equation has a solution only when $\nu = 1$. In this case C_1 is arbitrary and $C_2 = 0$. Therefore $\lambda_0 = -1$ is an eigenvalue and $X(x) = e^x$ is an eigenfunction.

- Case $\lambda = 0$: In this case the only solution of the X-problem is trivial.
- Case $\lambda > 0$: Set $\lambda = \nu^2$ with $\nu > 0$. The general solution of the ODE is $X(x) = C_1 \cos(\nu x) + C_2 \sin(\nu x)$.

The boundary conditions lead to the system for C_1 , C_2 :

$$C_1 = \nu C_2$$

$$C_1 \cos(2\nu) + C_2 \sin(2\nu) = -\nu C_1 \sin(2\nu) + \nu C_2 \cos(2\nu)$$

In order for this system to have a nontrivial solution ν must satisfy $(1 + \nu^2) \sin(2\nu) = 0$. Thus $2\nu = n\pi$ with $n \in \mathbb{Z}^+$. The eigenvalues are $\lambda_n = \left(\frac{n\pi}{2}\right)^2$ and the eigenfunction

$$X_n(x) = \frac{n\pi}{2}\cos\frac{n\pi x}{2} + \sin\frac{n\pi x}{2}$$

For the eigenvalue $\lambda_0 = -1$, the solution of the *T*-problem is generated by e^{3t} . For each eigenvalue $\lambda_n = \left(\frac{n\pi}{2}\right)^2$, the solutions of the corresponding *T*-problem are generated by $T_n(t) = e^{-3\nu_n^2\pi^2 t/4}$. Therefore, the solutions with separated variable of the BVP are:

$$u_0(x,t) = e^{3t}e^x; \quad u_n(x,t) = e^{-3n^2\pi^2 t/4} \left(\frac{n\pi}{2}\cos\frac{n\pi x}{2} + \sin\frac{n\pi x}{2}\right)$$