FOURIER SERIES PART II: CONVERGENCE

1. Exercises

In the following exercises, a 2π -periodic function f is given on the interval $[-\pi, \pi]$. (a.) Find the Fourier series of f: (b.) Find the intervals where f(x) is equal to its Fourier series: (c.) Determine whether the Fourier series converges uniformly

Exercise 1.
$$f(x) = \begin{cases} -1 & \text{if } 0 < x < \pi/2 \\ 1 & \text{if } -\pi/2 < x < 0 \\ 0 & \text{if } \pi/2 < |x| < \pi \end{cases}$$

The function f is odd so $a_n = 0$ for all n and

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) \, dx = -\frac{2}{\pi} \int_0^{\pi/2} \sin(nx) \, dx = \frac{2}{n\pi} \left(\cos\frac{n\pi}{2} - 1 \right)$$

Thus the Fourier series of f is

$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos(n\pi/2) - 1}{n} \sin(nx)$$

Exercise 2. $f(x) = |\sin x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$. **Exercise 3.** $f(x) = |\cos x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4n^2 - 1}$. The function is even so $b_n = 0$ for all n and

$$a_0 = \frac{2}{\pi} \int_0^{\pi} |\cos x| \, dx = \frac{4}{\pi} \int_0^{\pi/2} \cos x \, dx = \frac{4}{\pi}.$$

Date: February, 2021.

For $n \geq 1$,

$$a_n = \frac{2}{\pi} \int_0^{\pi} |\cos x| \, \cos(nx) \, dx = \frac{2}{\pi} \left[\int_0^{\pi/2} \cos x \, \cos(nx) \, dx - \int_{\pi/2}^{\pi} \cos x \, \cos(nx) \, dx \right]$$

Now use the substitution $x = -t + \pi$ to rewrite the second integral as

$$\int_{\pi/2}^{\pi} \cos x \, \cos(nx) \, dx = -\int_{-\pi/2}^{0} \cos(-t+\pi) \, \cos(-nt+n\pi) \, dt$$
$$= (-1)^{n+1} \int_{0}^{\pi/2} \cos t \, \cos(nt) \, dt$$

It follows (after using the identity $2\cos x \cos(nx) = \cos((n+1)x) + \cos((n-1)x))$ that for n > 1,

$$a_n = \frac{1 + (-1)^n}{\pi} \int_0^{\pi/2} 2\cos x \, \cos(nx) \, dx$$
$$= \frac{1 + (-1)^n}{\pi} \int_0^{\pi/2} 2 \left[\cos((n+1)x) + \cos((n-1)x) \right] \, dx$$
$$= \frac{1 + (-1)^n}{\pi} \left[\frac{\sin((n+1)\pi/2)}{n+1} + \frac{\sin((n-1)\pi/2)}{n-1} \right]$$

Since for n = 2k + 1 (odd), we have $\sin((n+1)\pi/2) = \sin((n-1)\pi/2) = 0$, then $a_{2k+1} = 0$. For n = 2k (even), we have $\sin((2k+1)\pi/2) = (-1)^k$, $\sin((2k-1)\pi/2) = -(-1)^k$. Thus

$$a_{2k} = \frac{2}{\pi} \left[\frac{(-1)^k}{2k+1} - \frac{(-1)^k}{2k-1} \right] = \frac{4}{\pi} \frac{(-1)^{k-1}}{4k^2 - 1}$$

We get the Fourier series representation of f

$$|\cos x| = \frac{2}{\pi} + \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4k^2 - 1} \cos(2kx)$$

(f is equal to its Fourier series because f is continuous).

For x = 0 we have $1 = \frac{2}{\pi} + \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4k^2 - 1}$. From this we get (after solving for the series)

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4k^2 - 1} = \frac{\pi - 2}{4}.$$

Exercise 4. $f(x) = \cos^2 x$ (thing about a trig. identity) **Exercise 5.** $f(x) = \sin^2 x$

$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos(2x)$$

Exercise 6. $f(x) = x^2$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

We have $b_n = 0$ for all n because the function is even.

$$a_0 = \frac{2}{\pi} \int_0^\pi x^2 \, dx = \frac{2\pi^2}{3}$$

For $n \ge 1$, we integration by parts to obtain

$$\int x^2 \, dx = \frac{x^2 \sin(nx)}{n} + \frac{2x \cos(nx)}{n^2} - \frac{2 \sin(nx)}{n^3} + C \, .$$

Thus

$$a_n = \frac{2}{\pi} \left[\frac{x^2 \sin(nx)}{n} + \frac{2x \cos(nx)}{n^2} - \frac{2 \sin(nx)}{n^3} \right]_0^{\pi} = \frac{4(-1)^n}{n^2}$$

The function is equal to its Fourier series (because it is continuous). In particular

$$x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos(nx) \quad \text{for all } x \in [-\pi, \pi]$$

Thus for x = 0 we get

$$0 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \implies \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

For $x = \pi$ we get

$$\pi^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2} \implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2\pi^2}{12}$$

Exercise 7. $f(x) = x(\pi - |x|)$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}$.

Exercise 8. Use the Fourier series for x^2 that you found in exercise 6 to deduce the fourier series of $x^3 - \pi^2 x$ on $[-\pi, \pi]$ (use integration of Fourier series).

It follows from the series representation of the function $f(x) = x^2$ (found in exercise 6) that for $x \in [-\pi, \pi]$ we have

$$\int_0^x t^2 dt = \int_0^x \left[\frac{\pi^2}{3} + 4 \sum_{n=1}^\infty \frac{(-1)^n}{n^2} \cos(nt) \right] dt$$

Termwise integration theorem of Fourier series implies

$$\frac{x^3}{3} = \frac{\pi^2 x}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \sin(nt)$$

and

$$x^{3} - \pi^{2}x = 12\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}\sin(nt)$$

Exercise 9. Use the Fourier series you found in exercise 8. To deduce that

$$x^{4} - 2\pi^{2}x^{2} = -\frac{7\pi^{4}}{15} + 48\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\cos nx}{n^{4}} \quad \text{for } -\pi < x < \pi .$$
ue of $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.

Deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

Exercise 10. Suppose that f(x) has Fourier series $\sum_{n=1}^{\infty} e^{-n^2} \sin nx$. Find the Fourier series of f'(x) and the Fourier series of f''(x) (justify your answer).

The coefficients of the given trigonometric series are $a_n = 0$ and $b_n = e^{-n^2}$. Since

$$\sum_{n=1}^{\infty} |a_n| + |b_n| = \sum_{n=1}^{\infty} e^{-n^2}$$

converge (you can use the ratio test $\sqrt[n]{e^{-n^2}} = e^{-n} \longrightarrow 0$ as $n \longrightarrow \infty$). The series converges uniformly and termwise differentiation is valid:

$$f(x) = \sum_{n=1}^{\infty} e^{-n^2} \sin nx, \quad f'(x) = \sum_{n=1}^{\infty} n e^{-n^2} \cos nx$$

A similar argument can be applied to find $f''(x) = -\sum_{n=1}^{\infty} n^2 e^{-n^2} \sin nx$.