FOURIER SERIES PART II: CONVERGENCE

1. Exercises

In the following exercises, a 2π-periodic function f is given on the interval $[-\pi, \pi]$. (a.) Find the Fourier series of f : (b.) Find the intervals where $f(x)$ is equal to its Fourier series: (c.) Determine whether the Fourier series converges uniformly
Exercise 1. $f(x)= \begin{cases}-1 & \text { if } 0<x<\pi / 2 \\ 1 & \text { if }-\pi / 2<x<0 \\ 0 & \text { if } \pi / 2<|x|<\pi\end{cases}$
The function f is odd so $a_{n}=0$ for all n and

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=-\frac{2}{\pi} \int_{0}^{\pi / 2} \sin (n x) d x=\frac{2}{n \pi}\left(\cos \frac{n \pi}{2}-1\right)
$$

Thus the Fourier series of f is

$$
\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos (n \pi / 2)-1}{n} \sin (n x)
$$

Exercise 2. $f(x)=|\sin x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$.
Exercise 3. $f(x)=|\cos x|$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n^{2}-1}$.
The function is even so $b_{n}=0$ for all n and

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi}|\cos x| d x=\frac{4}{\pi} \int_{0}^{\pi / 2} \cos x d x=\frac{4}{\pi} .
$$

Date: February, 2021.

For $n \geq 1$,

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi}|\cos x| \cos (n x) d x=\frac{2}{\pi}\left[\int_{0}^{\pi / 2} \cos x \cos (n x) d x-\int_{\pi / 2}^{\pi} \cos x \cos (n x) d x\right]
$$

Now use the substitution $x=-t+\pi$ to rewrite the second integral as

$$
\begin{aligned}
\int_{\pi / 2}^{\pi} \cos x \cos (n x) d x & =-\int_{-\pi / 2}^{0} \cos (-t+\pi) \cos (-n t+n \pi) d t \\
& =(-1)^{n+1} \int_{0}^{\pi / 2} \cos t \cos (n t) d t
\end{aligned}
$$

It follows (after using the identity $2 \cos x \cos (n x)=\cos ((n+1) x)+\cos ((n-1) x))$ that for $n>1$,

$$
\begin{aligned}
a_{n} & =\frac{1+(-1)^{n}}{\pi} \int_{0}^{\pi / 2} 2 \cos x \cos (n x) d x \\
& =\frac{1+(-1)^{n}}{\pi} \int_{0}^{\pi / 2} 2[\cos ((n+1) x)+\cos ((n-1) x)] d x \\
& =\frac{1+(-1)^{n}}{\pi}\left[\frac{\sin ((n+1) \pi / 2)}{n+1}+\frac{\sin ((n-1) \pi / 2)}{n-1}\right]
\end{aligned}
$$

Since for $n=2 k+1$ (odd), we have $\sin ((n+1) \pi / 2)=\sin ((n-1) \pi / 2)=0$, then $a_{2 k+1}=0$. For $n=2 k$ (even), we have $\sin ((2 k+1) \pi / 2)=(-1)^{k}, \sin ((2 k-1) \pi / 2)=-(-1)^{k}$. Thus

$$
a_{2 k}=\frac{2}{\pi}\left[\frac{(-1)^{k}}{2 k+1}-\frac{(-1)^{k}}{2 k-1}\right]=\frac{4}{\pi} \frac{(-1)^{k-1}}{4 k^{2}-1}
$$

We get the Fourier series representation of f

$$
|\cos x|=\frac{2}{\pi}+\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4 k^{2}-1} \cos (2 k x)
$$

(f is equal to its Fourier series because f is continuous).
For $x=0$ we have $1=\frac{2}{\pi}+\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4 k^{2}-1}$. From this we get (after solving for the series)

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4 k^{2}-1}=\frac{\pi-2}{4}
$$

Exercise 4. $f(x)=\cos ^{2} x$ (thing about a trig. identity)
Exercise 5. $f(x)=\sin ^{2} x$

$$
\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos (2 x)
$$

Exercise 6. $f(x)=x^{2}$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$
We have $b_{n}=0$ for all n because the function is even.

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2 \pi^{2}}{3} .
$$

For $n \geq 1$, we integration by parts to obtain

$$
\int x^{2} d x=\frac{x^{2} \sin (n x)}{n}+\frac{2 x \cos (n x)}{n^{2}}-\frac{2 \sin (n x)}{n^{3}}+C .
$$

Thus

$$
a_{n}=\frac{2}{\pi}\left[\frac{x^{2} \sin (n x)}{n}+\frac{2 x \cos (n x)}{n^{2}}-\frac{2 \sin (n x)}{n^{3}}\right]_{0}^{\pi}=\frac{4(-1)^{n}}{n^{2}}
$$

The function is equal to its Fourier series (because it is continuous). In particular

$$
x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n x) \quad \text { for all } x \in[-\pi, \pi]
$$

Thus for $x=0$ we get

$$
0=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \Longrightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

For $x=\pi$ we get

$$
\pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \Longrightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{2 \pi^{2}}{12}
$$

Exercise 7. $f(x)=x(\pi-|x|)$. Use the Fourier series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{3}}$.
Exercise 8. Use the Fourier series for x^{2} that you found in exercise 6 to deduce the fourier series of $x^{3}-\pi^{2} x$ on $[-\pi, \pi]$ (use integration of Fourier series).
It follows from the series representation of the function $f(x)=x^{2}$ (found in exercise 6) that for $x \in[-\pi, \pi]$ we have

$$
\int_{0}^{x} t^{2} d t=\int_{0}^{x}\left[\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n t)\right] d t
$$

Termwise integration theorem of Fourier series implies

$$
\frac{x^{3}}{3}=\frac{\pi^{2} x}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin (n t)
$$

and

$$
x^{3}-\pi^{2} x=12 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin (n t)
$$

Exercise 9. Use the Fourier series you found in exercise 8. To deduce that

$$
x^{4}-2 \pi^{2} x^{2}=-\frac{7 \pi^{4}}{15}+48 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cos n x}{n^{4}} \quad \text { for }-\pi<x<\pi .
$$

Deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
Exercise 10. Suppose that $f(x)$ has Fourier series $\sum_{n=1}^{\infty} \mathrm{e}^{-n^{2}} \sin n x$. Find the Fourier series of $f^{\prime}(x)$ and the Fourier series of $f^{\prime \prime}(x)$ (justify your answer).
The coefficients of the given trigonometric series are $a_{n}=0$ and $b_{n}=\mathrm{e}^{-n^{2}}$. Since

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|+\left|b_{n}\right|=\sum_{n=1}^{\infty} \mathrm{e}^{-n^{2}}
$$

converge (you can use the ratio test $\sqrt[n]{\mathrm{e}^{-n^{2}}}=\mathrm{e}^{-n} \longrightarrow 0$ as $n \longrightarrow \infty$). The series converges uniformly and termwise differentiation is valid:

$$
f(x)=\sum_{n=1}^{\infty} \mathrm{e}^{-n^{2}} \sin n x, \quad f^{\prime}(x)=\sum_{n=1}^{\infty} n \mathrm{e}^{-n^{2}} \cos n x
$$

A similar argument can be applied to find $f^{\prime \prime}(x)=-\sum_{n=1}^{\infty} n^{2} \mathrm{e}^{-n^{2}} \sin n x$.

