
FOURIER SERIES PART II:
CONVERGENCE

1. Exercises

In the following exercises, a 2π-periodic function f is given on the interval [−π, π]. (a.) Find
the Fourier series of f : (b.) Find the intervals where f(x) is equal to its Fourier series: (c.)
Determine whether the Fourier series converges uniformly

Exercise 1. f(x) =

 −1 if 0 < x < π/2
1 if − π/2 < x < 0
0 if π/2 < |x| < π

The function f is odd so an = 0 for all n and

bn =
2

π

∫ π

0

f(x) sin(nx) dx = − 2

π

∫ π/2

0

sin(nx) dx =
2

nπ

(
cos

nπ

2
− 1

)
Thus the Fourier series of f is

2

π

∞∑
n=1

cos(nπ/2)− 1

n
sin(nx)

Exercise 2. f(x) = | sin x|. Use the Fourier series to evaluate
∞∑
n=1

1

4n2 − 1
.

Exercise 3. f(x) = | cos x|. Use the Fourier series to evaluate
∞∑
n=1

(−1)n−1

4n2 − 1
.

The function is even so bn = 0 for all n and

a0 =
2

π

∫ π

0

| cosx| dx =
4

π

∫ π/2

0

cos x dx =
4

π
.
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For n ≥ 1,

an =
2

π

∫ π

0

| cosx| cos(nx) dx =
2

π

[∫ π/2

0

cos x cos(nx) dx−
∫ π

π/2

cos x cos(nx) dx

]
Now use the substitution x = −t+ π to rewrite the second integral as∫ π

π/2

cos x cos(nx) dx = −
∫ 0

−π/2

cos(−t+ π) cos(−nt+ nπ) dt

= (−1)n+1

∫ π/2

0

cos t cos(nt) dt

It follows (after using the identity 2 cosx cos(nx) = cos((n+1)x)+cos((n−1)x)) that for n > 1,

an =
1 + (−1)n

π

∫ π/2

0

2 cos x cos(nx) dx

=
1 + (−1)n

π

∫ π/2

0

2 [cos((n+ 1)x) + cos((n− 1)x)] dx

=
1 + (−1)n

π

[
sin((n+ 1)π/2)

n+ 1
+

sin((n− 1)π/2)

n− 1

]
Since for n = 2k+1 (odd), we have sin((n+1)π/2) = sin((n− 1)π/2) = 0, then a2k+1 = 0. For
n = 2k (even), we have sin((2k + 1)π/2) = (−1)k, sin((2k − 1)π/2) = −(−1)k. Thus

a2k =
2

π

[
(−1)k

2k + 1
− (−1)k

2k − 1

]
=

4

π

(−1)k−1

4k2 − 1

We get the Fourier series representation of f

| cosx| = 2

π
+

4

π

∞∑
k=1

(−1)k−1

4k2 − 1
cos(2kx)

(f is equal to its Fourier series because f is continuous).

For x = 0 we have 1 =
2

π
+

4

π

∞∑
k=1

(−1)k−1

4k2 − 1
. From this we get (after solving for the series)

∞∑
k=1

(−1)k−1

4k2 − 1
=

π − 2

4
.
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Exercise 4. f(x) = cos2 x (thing about a trig. identity)

Exercise 5. f(x) = sin2 x

sin2 x =
1

2
− 1

2
cos(2x)

Exercise 6. f(x) = x2. Use the Fourier series to evaluate
∞∑
n=1

1

n2
and

∞∑
n=1

(−1)n−1

n2

We have bn = 0 for all n because the function is even.

a0 =
2

π

∫ π

0

x2 dx =
2π2

3
.

For n ≥ 1, we integration by parts to obtain∫
x2 dx =

x2 sin(nx)

n
+

2x cos(nx)

n2
− 2 sin(nx)

n3
+ C .

Thus

an =
2

π

[
x2 sin(nx)

n
+

2x cos(nx)

n2
− 2 sin(nx)

n3

]π
0

=
4(−1)n

n2

The function is equal to its Fourier series (because it is continuous). In particular

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx) for all x ∈ [−π, π]

Thus for x = 0 we get

0 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
=⇒

∞∑
n=1

(−1)n−1

n2
=

π2

12

For x = π we get

π2 =
π2

3
+ 4

∞∑
n=1

1

n2
=⇒

∞∑
n=1

1

n2
=

2π2

12



4 FOURIER SERIES PART II: CONVERGENCE

Exercise 7. f(x) = x(π − |x|). Use the Fourier series to evaluate
∞∑
n=1

(−1)n−1

(2n− 1)3
.

Exercise 8. Use the Fourier series for x2 that you found in exercise 6 to deduce the fourier
series of x3 − π2x on [−π, π] (use integration of Fourier series).

It follows from the series representation of the function f(x) = x2 (found in exercise 6) that for
x ∈ [−π, π] we have ∫ x

0

t2 dt =

∫ x

0

[
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nt)

]
dt

Termwise integration theorem of Fourier series implies

x3

3
=

π2x

3
+ 4

∞∑
n=1

(−1)n

n3
sin(nt)

and

x3 − π2x = 12
∞∑
n=1

(−1)n

n3
sin(nt)

Exercise 9. Use the Fourier series you found in exercise 8. To deduce that

x4 − 2π2x2 = −7π4

15
+ 48

∞∑
n=1

(−1)n−1 cosnx

n4
for − π < x < π .

Deduce the value of
∞∑
n=1

1

n4
.

Exercise 10. Suppose that f(x) has Fourier series
∞∑
n=1

e−n2

sinnx. Find the Fourier series of

f ′(x) and the Fourier series of f ′′(x) (justify your answer).

The coefficients of the given trigonometric series are an = 0 and bn = e−n2
. Since

∞∑
n=1

|an|+ |bn| =
∞∑
n=1

e−n2
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converge (you can use the ratio test
n
√
e−n2 = e−n −→ 0 as n −→ ∞). The series converges

uniformly and termwise differentiation is valid:

f(x) =
∞∑
n=1

e−n2

sinnx, f ′(x) =
∞∑
n=1

ne−n2

cosnx

A similar argument can be applied to find f ′′(x) = −
∞∑
n=1

n2e−n2

sinnx.


