
FOURIER SERIES PART III:
APPLICATIONS

1. Exercises

Exercise 1. (a) Find the Fourier series of the function with period 4 that is defined over [−2, 2]

by f(x) =
4− x2

2
.

(b) Use Parseval’s equality to evaluate the series
∞∑
n=1

1

n4
.

(c) Use the integral test to estimate the mean square error EN when replacing f by its
truncated Fourier series SNf .

(d) Find N so that EN ≤ 0.01 and then find N so that EN ≤ 0.001

a. The function is even so bn = 0 and an =
2

2

∫ 2

0

4− x2

2
cos

nπx

2
dx.

a0 =

∫ 2

0

4− x2

2
dx =

8

3

an =

∫ 2

0

4− x2

2
cos

nπx

2
dx =

8(−1)n+1

π2n2
for n ≥ 1

(the last formula is obtained after integration by parts). Since f is continuous, then

4− x2

2
=

4

3
+

8

π2

∞∑
n=1

(−1)n+1

n2
cos

nπx

2
for x ∈ [−2, 2].
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2 FOURIER SERIES PART III: APPLICATIONS

b. By using the fact that f is even, p = 2, a0 = 8/3 and an =
8(−1)n+1

π2n2
, the Parseval identity

1

2p

∫ p

−p

f(x)2 =
(a0
2

)2

+
1

2

∞∑
n=1

(a2n + b2n)

can be rewritten as
1

2

∫ 2

0

(
4− x2

2

)2

dx =
42

32
+

82

π4

∞∑
n=1

1

n4
.

so
1

8

[
16x− 8

3
x3 +

1

5
x5

]2
0

=
16

9
+

64

π4

∞∑
n=1

1

n4
.

It follows that
∞∑
n=1

1

n4
=

π4

90
.

c. The mean square error EN is given by

E2
N =

1

p

∫ p

−p

(f(x)− SNf(x))
2 dx =

∞∑
n=N+1

(a2n + b2n)

In this case E2
N ≤ 64

π4

∞∑
n=N+1

1

n4
. By using the integral test and the function 1/x4 (see figure),

we find
∞∑

n=N+1

1

n4
≤

∫ ∞

N

1

x4
dx =

1

3N3
.

We have thus the estimate

E2
N ≤ 64

3π4N3

d. In order to have EN ≤ 10−2, it is enough to have

64

3π4N3
≤ 10−4 =⇒ N ≥ 3

√
104 64

3π4
≈ 12.99

Therefore taking N ≥ 13 insures that SNf approximates f to within 0.01

Exercise 2. (a) Find the Fourier series of the function with period 4 that is defined over [−2, 2]
by

f(x) =

{
1− x if 0 ≤ x ≤ 2
1 + x if − 2 ≤ x ≤ 0

(b) Use Parseval’s equality to evaluate the series
∞∑
j=0

1

(2j + 1)4
.

(c) Use the integral test to estimate the mean square error EN when replacing f by its
truncated Fourier series SNf .

(d) Find N so that EN ≤ 0.01 and then find N so that EN ≤ 0.001
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Exercise 3. Find the Fourier sine series of f(x) = cos x over [0, π] (What is the Fourier cosine
series of cos x on [0, π]?)

The n-th Fourier sine coefficient of f(x) = cosx is

bn =
2

π

∫ π

0

cos(x) sin(nx) dx =
1

π

∫ π

0

[sin((n+ 1)x) + sin((n− 1)x)] dx .

We have b1 =
−1

2π
[cos(2x)]π0 = 0 and for n > 1,

bn =
−1

π

[
cos((n+ 1)x)

n+ 1
− cos((n− 1)x)

n− 1

]π
0

=
2n(1 + (−1)n)

π(n2 − 1)
=


0 if n = 2k + 1

8k

π(4k2 − 1)
if n = 2k

The Fourier sine series representation of the function cosx over [0, π] is

cos x =
8

π

∞∑
k=1

k

4k2 − 1
sin(2kx) , ∀x ∈ (0, π) .

The Fourier cosine series of cosx is cosx (has only one term).

Exercise 4. Find the Fourier cosine series of f(x) = sinx over [0, π] (What is the Fourier sine
series of sin x on [0, π]?)

Exercise 5. Find the Fourier cosine series of f(x) = x2 over [0, 1].

We have

a0 = 2

∫ 1

0

x2dx =
2

3
and for n ≥ 1 an integration by parts gives∫

x2 cos(nπx) dx =
x2 sin(nπx)

nπ
+

2x cos(nπx)

n2π2
− 2 sin(nπx)

n3π3
+ C

and

an = 2

∫ 1

0

x2 cos(nπx) dx =
4(−1)n

π2n2
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The Fourier cosine representation of x2 over [0, 1] is

x2 =
1

3
+

4

π2

∞∑
n=1

(−1)n

n2
cos(nπx) .

Exercise 6. Find the Fourier sine series of f(x) = x2 over [0, 1].

Exercise 7. Find the Fourier cosine series of f(x) = x sinx over [0, π].

Exercise 8. Find the Fourier sine series of f(x) = x sin x over [0, π].

To find the bn’s, use the identity 2 sinx sin(nx) = cos((n − 1)x) − cos((n + 1)x) and then
integration by parts. We have

b1 =
1

π

∫ π

0

x(1− cos(2x)) dx =
π

2

For n > 1,

bn =
1

π

∫ π

0

x [cos((n− 1)x)− cos((n+ 1)x)] dx =
4n [(−1)n+1 − 1]

(n2 − 1)2
.

So b2k+1 = 0 and b2k =
−16k

π(4k2 − 1)2
and

x sinx =
π

2
sin x− 16

π

∞∑
k=1

k

(4k2 − 1)2
sin(2kx) .

Exercise 9. Solve the BVP ut = uxx, 0 < x < 2, t > 0
u(0, t) = u(2, t) = 0, t > 0
u(x, 0) = f(x), 0 < x < 2

where

f(x) =

{
1 if 0 < x < 1
0 if 1 < x < 2
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The solutions with separated variables of the homogeneous part of the BVP are:

un(x, t) = e−(
nπ
2 )

2
t sin

nπx

2
.

The series representation of the general solution is

u(x, t) =
∞∑
n=1

Cn e
−(nπ

2 )
2
t sin

nπx

2
.

The nonhomogeneous condition u(x, 0) = f(x) gives

f(x) =
∞∑
n=1

Cn sin
nπx

2
.

Therefore

Cn =

∫ 2

0

f(x) sin
nπx

2
dx =

∫ 1

0

sin
nπx

2
dx =

2

nπ

(
1− cos

nπ

2

)
The solution of the BVP is:

u(x, t) =
∞∑
n=1

2

nπ

(
1− cos

nπ

2

)
e−(

nπ
2 )

2
t sin

nπx

2
.

Exercise 10. Solve the BVP ut = uxx, 0 < x < 2, t > 0
u(0, t) = u(2, t) = 0, t > 0
u(x, 0) = cos(πx), 0 < x < 2

Exercise 11. Solve the BVP ut + u = (0.1)uxx, 0 < x < π, t > 0
ux(0, t) = ux(π, t) = 0, t > 0
u(x, 0) = sin x, 0 < x < π

If u(x, t) = X(t)T (t) is a nontrivial solution of (HP), then X and T solve the ODE problems{
X ′′(x) + λX(x) = 0
X ′(0) = 0, X ′(π) = 0

T ′(t) + (1 + 0.1λ)T (t) = 0 .

The eigenvalues and eigenfunctions of the X−problem are λn = n2, Xn(x) = cos(nx) with

n = 0, 1, 2, · · · . The corresponding solutions of the T−problem are Tn(t) = e−(1+0.1n2)t. The
series representation of the general solution is

u(x, t) = C0e
−t +

∞∑
n=1

Cne
−(1+0.1n2)t cos(nx).

The nonhomogeneous condition gives

u(x, 0) = sinx = C0 +
∞∑
n=1

Cn cos(nx)

(cosine series of sin x over [0, π]). Hence

C0 =
1

2

2

π

∫ π

0

sin x dx =
2

π
, C1 =

2

π

∫ π

0

sinx cos x dx =
1

π

∫ π

0

sin(2x) dx = 0.

For n ≥ 2, we get

Cn =
2

π

∫ π

0

sinx cos(nx) dx =
1

π

∫ π

0

[sin((n+ 1)x)− sin((n− 1)x)] dx =
2[(−1)n+1 − 1]

π(n2 − 1)
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Note that C2k+1 = 0 and C2k = − 4

π(4k2 − 1)
. The solution of the BVP is

u(x, t) =
2

π
e−t − 4

π

∞∑
k=1

1

4k2 − 1
e−(1+0.4 k2)t cos(2kx) .

Exercise 12. Consider the BVP modeling heat propagation in a rod where the end points are
kept at constant temperatures T1 and T2: ut = kuxx, 0 < x < L, t > 0

u(0, t) = T1, u(L, t) = T2, t > 0
u(x, 0) = f(x), 0 < x < L

Since T1 and T2 are not necessarily zero, we cannot apply directly the method of eigenfunctions
expansion. To solve such a problem, we can proceed as follows.

1. Find a function α(x) (independent on time t) so that

α′′(x) = 0, α(0) = T1 α(L) = T2 .

2. Let v(x, t) = u(x, t)− α(x). Verify that if u(x, t) solves the given BVP, then v(x, t) solves
the following problem  vt = kvxx, 0 < x < L, t > 0

v(0, t) = 0, v(L, t) = 0, t > 0
v(x, 0) = f(x)− α(x), 0 < x < L

The v-problem can be solved by the method of separation of variables. The solution u of the
original problem is therefore u(x, t) = v(x, t) + α(x).

Exercise 13. Apply the method of described in Exercise 12 to solve the problem ut = uxx, 0 < x < 2, t > 0
u(0, t) = T1, u(2, t) = T2, t > 0
u(x, 0) = f(x), 0 < x < 2

in the following cases
1. T1 = 100, T2 = 0, f(x) = 0.
2. T1 = 100, T2 = 100, f(x) = 0.
3. T1 = 0, T2 = 100, f(x) = 50x.

Consider the case 2: T1 = 100, T2 = 100, f(x) = 0.
The function α(x) satisfies α′′(x) = 0, α(0) = 100, α(2) = 100. It follows that α(x) = 100.
Let v(x, t) = u(x, t)− α(x). The function v satisfies the following BVP vt = vxx, 0 < x < 2, t > 0

v(0, t) = 0, v(2, t) = 0, t > 0
v(x, 0) = −100, 0 < x < 2

The solutions with separated variables of the homogeneous part are e−
π2n2

4
t sin

nπx

2
with n ∈ Z+.

The series representation of the general solution is

v(x, t) =
∞∑
n=1

Cne
−π2n2

4
t sin

nπx

2
.

The nonhomogeneous condition implie

v(x, 0) = −100 =
∞∑
n=1

Cn sin
nπx

2
.
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Therefore Cn =

∫ 2

0

(−100) sin
nπx

2
dx =

200 [(−1)n − 1]

nπ
. Hence

v(x, t) =
200

π

∞∑
n=1

[(−1)n − 1]

n
e−

π2n2

4
t sin

nπx

2
=

−400

π

∞∑
k=0

1

2k + 1
e−

π2(2k+1)2

4
t sin

(2k + 1)πx

2
.

The solution u(x, t) = v(x, t) + α(x) of the original BVP is

u(x, t) = 100− 400

π

∞∑
k=0

1

2k + 1
e−

π2(2k+1)2

4
t sin

(2k + 1)πx

2
.

In problems 14 to 16, solve the wave propagation problem utt = c2uxx, 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L

Exercise 14. c = 1, L = 2, f(x) = 0, g(x) =

{
x if 0 < x < 1
2− x if 1 < x < 2

Exercise 15. c = 1/π, L = 2, f(x) = sin(πx), g(x) =

{
x if 0 < x < 1
2− x if 1 < x < 2

The BVP in this case is
utt =

1

π2
uxx, 0 < x < 2, t > 0

u(0, t) = 0, u(2, t) = 0, t > 0
u(x, 0) = sin(πx), ut(x, 0) = g(x) 0 < x < 2

The solutions with separated variables of the homogeneous part are

cos
nt

2
sin

nπx

2
, sin

nt

2
sin

nπx

2
, n ∈ Z+

The series representation of the general solution is

u(x, t) =
∞∑
n=1

[
An cos

nt

2
+Bn sin

nt

2

]
sin

nπx

2

We have

ut(x, t) =
∞∑
n=1

n

2

[
−An sin

nt

2
+Bn cos

nt

2

]
sin

nπx

2

The nonhomogeneous conditions imply that

u(x, 0) = sin(πx) =
∞∑
n=1

An sin
nπx

2
and ut(x, 0) = g(x) =

∞∑
n=1

n

2
Bn sin

nπx

2

Therefore,

An = 0 for n ̸= 2 and A2 = 1,

and
n

2
Bn =

∫ 2

0

g(x) sin
nπx

2
dx =

∫ 1

0

x sin
nπx

2
dx+

∫ 2

1

(2− x) sin
nπx

2
dx.

An integration by parts gives

n

2
Bn =

8 sin(nπ/2)

π2n2
=⇒ Bn =

16 sin(nπ/2)

π2n3
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The solution of the BVP is

u(x, t) = cos t sin(πx) +
16

π2

∞∑
n=1

sin(nπ/2)

n3
sin

nt

2
sin

nπx

2

Exercise 16. c = 2, L = π, f(x) = x sin x, g(x) = sin(2x).

In exercises 17 to 19, solve the wave propagation problem with damping utt + 2aut = c2uxx, 0 < x < L, t > 0
u(0, t) = 0, u(L, t) = 0, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L

Exercise 17. c = 1, a = .5, L = π, f(x) = 0, g(x) = x

The BVP is  utt + ut = uxx, 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0, t > 0
u(x, 0) = 0, ut(x, 0) = x 0 < x < π

If u(x, t) = X(x)T (t) is a nontrivial solution of the homogeneous part, then X(x) and T (t) solve
the ODE problems{

X ′′(x) + λX(x) = 0
X(0) = 0, X(π) = 0

,

{
T ′′(t) + T ′(t) + λT (t) = 0
T (0) = 0

,

where λ is the separation constant. The eigenvalues and eigenfunctions of the SL problem
(X−problem) are

λn = n2 , Xn = sin(nx) n ∈ Z+.

For each eigenvalue λn, thew corresponding T−problem has characteristic equation

m2 +m+ n2 = 0 =⇒ m =
−1

2
± i ωn with ωn =

√
4n2 − 1

2

The T−problem has one independent solution given by Tn(t) = e−t/2 sin(ωnt). The solutions
with separated variables of the homogeneous part are e−t/2 sin(ωnt) sin(nx) and a series repre-
sentation of the general solution is

u(x, t) =
∞∑
n=1

Cne
−t/2 sin(ωnt) sin(nx) .

We have

ut(x, t) =
∞∑
n=1

e−t/2

[
−Cn

2
sin(ωnt) + ωnCn cos(ωnt)

]
sin(nx).

So

ut(x, 0) = x =
∞∑
n=1

ωnCn sin(nx) =⇒ ωnCn =
2

π

∫ π

0

x sin(nx) dx =
2(−1)n+1

n
.

Thus Cn =
2(−1)n+1

nωn

and the solution of the BVP is

u(x, t) = e−t/2

∞∑
n=1

2(−1)n+1

nωn

sin(ωnt) sin(nx) .

Exercise 18. c = 4, a = π, L = 1, f(x) = x(1− x), g(x) = 0.

Exercise 19. c = 1, a = π/6, L = 2, f(x) = x sin(πx), g(x) = 1.
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The BVP is 
utt +

π

3
ut = uxx, 0 < x < 2, t > 0

u(0, t) = 0, u(2, t) = 0, t > 0
u(x, 0) = x sin(πx), ut(x, 0) = 1 0 < x < 2

If u(x, t) = X(x)T (t) is a nontrivial solution of the homogeneous part, then X(x) and T (t) solve
the ODE problems{

X ′′(x) + λX(x) = 0
X(0) = 0, X(2) = 0

, T ′′(t) +
π

3
T ′(t) + λT (t) = 0 ,

where λ is the separation constant. The eigenvalues and eigenfunctions of the SL problem
(X−problem) are

λn =
(nπ

2

)2

, Xn = sin
nπx

2
n ∈ Z+.

For each eigenvalue λn, thew corresponding T−problem has characteristic equation

m2 +
π

3
m+

(nπ
2

)2

= 0 =⇒ m =
−π

6
± i ωn with ωn =

√
9n2 − 1 π

3

The T−problem has two independent solutions given by Tn,1(t) = e−πt/6 cos(ωnt) and Tn,2(t) =

e−πt/6 sin(ωnt). The solutions with separated variables of the homogeneous part are Tn,1(t)Xn(x)
and Tn,2(t)Xn(x). The series representation of the general solution is

u(x, t) = e−πt/6

∞∑
n=1

[An cos(ωnt) + Bn sin(ωnt)] sin
nπx

2
.

We have

ut(x, t) = e−πt/6

∞∑
n=1

[(
ωnBn −

π

6
An

)
cos(ωnt)−

(
ωnAn +

π

6
Bn

)
sin(ωnt)

]
sin

nπx

2
.

The initial conditions are

u(x, 0) = x sin(πx) =
∞∑
n=1

An sin
nπx

2
, ut(x, 0) = 1 =

∞∑
n=1

(
ωnBn −

π

6
An

)
sin

nπx

2
.

Thus

An =

∫ 2

0

x sin(πx) sin
nπx

2
dx and ωnBn −

π

6
An =

∫ 2

0

sin
nπx

2
dx .

Using integration by parts we find

A1 =
−32

9π2
, A2 = 1 , and An =

16

π2

[(−1)n − 1]n

(n2 − 4)2
for n ≥ 3.

Then

B1 =
92

27πω1

, B2 =
π

6ω2

, and Bn =
[(−1)n − 1] (8n2 − 6(n2 − 4)2)

πωnn(n2 − 4)2
for n ≥ 3.

The solution of the BVP is

u(x, t) = e−t/2

[
−32

9π2
cos(ω1t) +

92

27πω1

sin(ω1t)

]
sin

πx

2
+ e−t/2

[
cos(ω2t) +

π

6ω2

sin(ω2t)

]
sinπx+

+e−t/2

∞∑
n=2

[
16

π2
cos(ωnt) +

8n2 − 6(n2 − 4)2

πnωn

sin(ωnt)

]
(−1)n − 1

(n2 − 4)2
sin

nπx

2
.
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In exercises 20 to 22, solve the Laplace equation ∆u(x, y) = 0 inside the rectangle 0 < x < L,
0 < y < H subject the the given boundary conditions.
Exercise 20. L = H = π, u(x, 0) = x(π − x), u(x, π) = 0, u(0, y) = u(π, y) = 0.

Exercise 21. L = π, H = 2π, u(x, 0) = 0, u(x, 2π) = x, ux(0, y) = sin y, ux(π, y) = 0.

The BVP is  uxx + uyy, 0 < x < π, 0 < y < 2π
u(x, 0) = 0, u(x, 2π) = x, 0 < y < 2π
ux(0, y) = sin y, ux(π, y) = 0 0 < y < 2π

Seek solution u as u = v + w, where v(x, y) and w(x, y) solve the following BVP, respectively.

(∗)

 vxx + vyy,
v(x, 0) = 0, v(x, 2π) = x,
vx(0, y) = 0, vx(π, y) = 0

and (∗∗)

 wxx + wyy,
w(x, 0) = 0, w(x, 2π) = 0,
wx(0, y) = sin y, wx(π, y) = 0

• v-problem: If v(x, t) = X(x)Y (y) is a nontrivial solution the homogeneous part of (∗), then
X and Y solve the ODE problems{

X ′′ + λX = 0
X ′(0) = 0, X ′(π) = 0

and

{
Y ′′ − λY = 0
Y (0) = 0

.

The eigenvalues and eigenfunctions of the X-problem are

λn = n2, Xn(x) = cos(nx), n = 0, 1, 2, · · ·
The corresponding solutions of the Y -problem are

Y0(y) = y for n = 0, and Yn(y) = sinh(ny) for n = 1, 2, 3 · · ·
The general series solution of BVP (∗) is

v(x, y) = C0y +
∞∑
n=1

Cn sinh(ny) cos(nx) .

The nonhomogeneous condition gives

v(x, 2π) = x = 2πC0 +
∞∑
n=1

Cn sinh(2πn) cos(nx) .

Hence

4πC0 =
2

π

∫ π

0

x dx = π =⇒ C0 =
1

4
and for n ≥ 1

Cn sinh(2πn) =
2

π

∫ π

0

x cos(nx) dx =⇒ Cn =
2 [(−1)n − 1]

π n2 sinh(2πn)

The solution of BVP (∗) is

v(x, y) =
y

4
+

2

π

∞∑
n=1

(−1)n − 1

n2

sinh(ny)

sinh(2πn)
cos(nx)

• w-problem: If w(x, t) = X(x)Y (y) is a nontrivial solution the homogeneous part of (∗∗), then
X and Y solve the ODE problems{

Y ′′ + λY = 0
Y (0) = 0, Y (2π) = 0

and

{
X ′′ − λX = 0
X ′(π) = 0

.

The eigenvalues and eigenfunctions of the Y -problem are

λn =
(n
2

)2

, Yn(y) = sin
ny

2
, n = 1, 2, 3, · · ·
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The corresponding solutions of the X-problem are

Xn(y) = cosh
n(x− π)

2
for n = 1, 2, 3 · · ·

The general series solution of BVP (∗) is

w(x, y) =
∞∑
n=1

Cn cosh
n(x− π)

2
sin

ny

2
.

We have

wx(x, y) =
∞∑
n=1

nCn

2
sinh

n(x− π)

2
sin

ny

2
.

The nonhomogeneous condition gives

wx(0, y) = sin y =
∞∑
n=1

−nCn

2
sinh

nπ

2
sin

ny

2
.

Hence
Cn = 0 if n ̸= 2 and − C2 sinhπ = 1 .

The solution of BVP (∗∗) is

w(x, y) = −cosh(x− π)

sinh π
sin y .

• The solution u of the original BVP is

u(x, y) = w(x, y) + v(x, y) = −cosh(x− π)

sinh π
sin y +

y

4
+

2

π

∞∑
n=1

(−1)n − 1

n2

sinh(ny)

sinh(2πn)
cos(nx)

Exercise 22. L = H = 1, u(x, 0) = u(x, 1) = 0, u(0, y) = 1, u(1, y) = sin y.

Exercise 23. Solve the Laplace equation ∆u(r, θ) = 0 inside the semicircle of radius 2 (0 <
r < 2, 0 < θ < π ) subject to the boundary conditions

u(r, 0) = u(r, π) = 0 (0 < r < 2) and u(2, θ) = θ(π − θ) (0 < θ < π)

If u(r, θ) = R(r)Θ(θ) is a nontrivial solution of the homogeneous part, then R and Θ solve the
ODE problems:{

Θ′′(θ) + λΘ(θ) = 0
Θ(0) = 0, Θ(π) = 0

and

{
r2R′′(r) + rR′(r)− λR(r) = 0
R bounded function

.

where λ is the separation constant. The eigenvalues and eigenfunctions of the Θ-problem are:

λn = n2, Θn(θ) = sin(nθ), n ∈ Z+.

The corresponding R-ODE is a Cauchy-Euler with independent solutions rn and r−n. Since we
are interested only in bounded solutions, the solution r−n is not bounded as r −→ 0+ and will
be ignored. The solutions with separation of variables are

un(r, θ) = rn sin(nθ) n ∈ Z+.

The series representation of the general solution is

u(r, θ) =
∞∑
n=1

Cnr
n sin(nθ) .

Use the nonhomogeneous condition to find the constants Cn.

u(2, θ) = θ (π − θ) =
∞∑
n=1

2nCn sin(nθ) =⇒ 2nCn =
2

π

∫ π

0

θ (π − θ) sin(nθ) dθ.
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An integration by parts gives 2nCn =
4(1− (−1)n)

πn3
. Therefore the solution of the BVP is

u(r, θ) =
∞∑
n=1

4(1− (−1)n)

πn3

rn

2n
sin(nθ) =

8

π

∞∑
k=0

r2k+1

22k+1(2k + 1)3
sin((2k + 1)θ) .

Exercise 24. Solve the Laplace equation ∆u(r, θ) = 0 inside the semicircle of radius 2 (0 <
r < 2, 0 < θ < π ) subject to the boundary conditions

uθ(r, 0) = uθ(r, π) = 0 (0 < r < 2) and u(2, θ) = θ(π − θ) (0 < θ < π)

Exercise 25. Solve the Laplace equation ∆u(r, θ) = 0 inside the quarter of a circle of radius 2
(0 < r < 2, 0 < θ < π/2 ) subject to the boundary conditions

u(r, 0) = u(r, π/2) = 0 (0 < r < 2) and u(2, θ) = θ (0 < θ < π/2)

If u(r, θ) = R(r)Θ(θ) is a nontrivial solution of the homogeneous part, then R and Θ solve the
ODE problems:{

Θ′′(θ) + λΘ(θ) = 0
Θ(0) = 0, Θ(π/2) = 0

and

{
r2R′′(r) + rR′(r)− λR(r) = 0
R bounded function

.

where λ is the separation constant. The eigenvalues and eigenfunctions of the Θ-problem are:

λn = (2n)2, Θn(θ) = sin(2nθ), n ∈ Z+.

The corresponding R-ODE is a Cauchy-Euler with independent solutions r2n and r−2n. Since
we are interested only in bounded solutions, the solution r−2n is not bounded as r −→ 0+ and
will be ignored. The solutions with separation of variables are

un(r, θ) = r2n sin(2nθ) n ∈ Z+.

The series representation of the general solution is

u(r, θ) =
∞∑
n=1

Cnr
2n sin(2nθ) .

Use the nonhomogeneous condition to find the constants Cn.

u(2, θ) = θ =
∞∑
n=1

22nCn sin(2nθ) =⇒ 22nCn =
4

π

∫ π/2

0

θ sin(2nθ) dθ.

An integration by parts gives 22nCn =
(−1)n+1

n
. Therefore the solution of the BVP is

u(r, θ) =
∞∑
n=1

(−1)n+1

n

r2n

22n
sin(2nθ) .


