## FOURIER SERIES PART III: APPLICATIONS

## 1. Exercises

Exercise 1. (a) Find the Fourier series of the function with period 4 that is defined over $[-2,2]$ by $f(x)=\frac{4-x^{2}}{2}$.
(b) Use Parseval's equality to evaluate the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
(c) Use the integral test to estimate the mean square error $E_{N}$ when replacing $f$ by its truncated Fourier series $S_{N} f$.
(d) Find $N$ so that $E_{N} \leq 0.01$ and then find $N$ so that $E_{N} \leq 0.001$
a. The function is even so $b_{n}=0$ and $a_{n}=\frac{2}{2} \int_{0}^{2} \frac{4-x^{2}}{2} \cos \frac{n \pi x}{2} d x$.

$$
\begin{aligned}
& a_{0}=\int_{0}^{2} \frac{4-x^{2}}{2} d x=\frac{8}{3} \\
& a_{n}=\int_{0}^{2} \frac{4-x^{2}}{2} \cos \frac{n \pi x}{2} d x=\frac{8(-1)^{n+1}}{\pi^{2} n^{2}} \text { for } n \geq 1
\end{aligned}
$$

(the last formula is obtained after integration by parts). Since $f$ is continuous, then

$$
\frac{4-x^{2}}{2}=\frac{4}{3}+\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos \frac{n \pi x}{2} \text { for } x \in[-2,2]
$$



Date: february, 2021.
b. By using the fact that $f$ is even, $p=2, a_{0}=8 / 3$ and $a_{n}=\frac{8(-1)^{n+1}}{\pi^{2} n^{2}}$, the Parseval identity

$$
\frac{1}{2 p} \int_{-p}^{p} f(x)^{2}=\left(\frac{a_{0}}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

can be rewritten as

$$
\frac{1}{2} \int_{0}^{2}\left(\frac{4-x^{2}}{2}\right)^{2} d x=\frac{4^{2}}{3^{2}}+\frac{8^{2}}{\pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

so

$$
\frac{1}{8}\left[16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right]_{0}^{2}=\frac{16}{9}+\frac{64}{\pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

It follows that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.
c. The mean square error $E_{N}$ is given by

$$
E_{N}^{2}=\frac{1}{p} \int_{-p}^{p}\left(f(x)-S_{N} f(x)\right)^{2} d x=\sum_{n=N+1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

In this case $E_{N}^{2} \leq \frac{64}{\pi^{4}} \sum_{n=N+1}^{\infty} \frac{1}{n^{4}}$. By using the integral test and the function $1 / x^{4}$ (see figure), we find

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{4}} \leq \int_{N}^{\infty} \frac{1}{x^{4}} d x=\frac{1}{3 N^{3}}
$$

We have thus the estimate

$$
E_{N}^{2} \leq \frac{64}{3 \pi^{4} N^{3}}
$$

d. In order to have $E_{N} \leq 10^{-2}$, it is enough to have


$$
\frac{64}{3 \pi^{4} N^{3}} \leq 10^{-4} \Longrightarrow N \geq \sqrt[3]{\frac{10^{4} 64}{3 \pi^{4}}} \approx 12.99
$$

Therefore taking $N \geq 13$ insures that $S_{N} f$ approximates $f$ to within 0.01
Exercise 2. (a) Find the Fourier series of the function with period 4 that is defined over $[-2,2]$ by

$$
f(x)= \begin{cases}1-x & \text { if } 0 \leq x \leq 2 \\ 1+x & \text { if }-2 \leq x \leq 0\end{cases}
$$

(b) Use Parseval's equality to evaluate the series $\sum_{j=0}^{\infty} \frac{1}{(2 j+1)^{4}}$.
(c) Use the integral test to estimate the mean square error $E_{N}$ when replacing $f$ by its truncated Fourier series $S_{N} f$.
(d) Find $N$ so that $E_{N} \leq 0.01$ and then find $N$ so that $E_{N} \leq 0.001$

Exercise 3. Find the Fourier sine series of $f(x)=\cos x$ over $[0, \pi]$ (What is the Fourier cosine series of $\cos x$ on $[0, \pi]$ ?)
The $n$-th Fourier sine coefficient of $f(x)=\cos x$ is

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos (x) \sin (n x) d x=\frac{1}{\pi} \int_{0}^{\pi}[\sin ((n+1) x)+\sin ((n-1) x)] d x .
$$

We have $b_{1}=\frac{-1}{2 \pi}[\cos (2 x)]_{0}^{\pi}=0$ and for $n>1$,
$b_{n}=\frac{-1}{\pi}\left[\frac{\cos ((n+1) x)}{n+1}-\frac{\cos ((n-1) x)}{n-1}\right]_{0}^{\pi}=\frac{2 n\left(1+(-1)^{n}\right)}{\pi\left(n^{2}-1\right)}= \begin{cases}0 & \text { if } n=2 k+1 \\ \frac{8 k}{\pi\left(4 k^{2}-1\right)} & \text { if } n=2 k\end{cases}$
The Fourier sine series representation of the function $\cos x$ over $[0, \pi]$ is

$$
\cos x=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{k}{4 k^{2}-1} \sin (2 k x), \quad \forall x \in(0, \pi) .
$$

The Fourier cosine series of $\cos x$ is $\cos x$ (has only one term).



Exercise 4. Find the Fourier cosine series of $f(x)=\sin x$ over $[0, \pi]$ (What is the Fourier sine series of $\sin x$ on $[0, \pi]$ ?)
Exercise 5. Find the Fourier cosine series of $f(x)=x^{2}$ over $[0,1]$.
We have

$$
a_{0}=2 \int_{0}^{1} x^{2} d x=\frac{2}{3}
$$

and for $n \geq 1$ an integration by parts gives

$$
\int x^{2} \cos (n \pi x) d x=\frac{x^{2} \sin (n \pi x)}{n \pi}+\frac{2 x \cos (n \pi x)}{n^{2} \pi^{2}}-\frac{2 \sin (n \pi x)}{n^{3} \pi^{3}}+C
$$

and

$$
a_{n}=2 \int_{0}^{1} x^{2} \cos (n \pi x) d x=\frac{4(-1)^{n}}{\pi^{2} n^{2}}
$$

The Fourier cosine representation of $x^{2}$ over $[0,1]$ is

$$
x^{2}=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n \pi x) .
$$




Exercise 6. Find the Fourier sine series of $f(x)=x^{2}$ over [ 0,1$]$.
Exercise 7. Find the Fourier cosine series of $f(x)=x \sin x$ over $[0, \pi]$.
Exercise 8. Find the Fourier sine series of $f(x)=x \sin x$ over $[0, \pi]$.
To find the $b_{n}$ 's, use the identity $2 \sin x \sin (n x)=\cos ((n-1) x)-\cos ((n+1) x)$ and then integration by parts. We have

$$
b_{1}=\frac{1}{\pi} \int_{0}^{\pi} x(1-\cos (2 x)) d x=\frac{\pi}{2}
$$

For $n>1$,

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} x[\cos ((n-1) x)-\cos ((n+1) x)] d x=\frac{4 n\left[(-1)^{n+1}-1\right]}{\left(n^{2}-1\right)^{2}} .
$$

So $b_{2 k+1}=0$ and $b_{2 k}=\frac{-16 k}{\pi\left(4 k^{2}-1\right)^{2}}$ and

$$
x \sin x=\frac{\pi}{2} \sin x-\frac{16}{\pi} \sum_{k=1}^{\infty} \frac{k}{\left(4 k^{2}-1\right)^{2}} \sin (2 k x) .
$$

Exercise 9. Solve the BVP

$$
\begin{cases}u_{t}=u_{x x}, & 0<x<2, \quad t>0 \\ u(0, t)=u(2, t)=0, & t>0 \\ u(x, 0)=f(x), & 0<x<2\end{cases}
$$

where

$$
f(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { if } 1<x<2\end{cases}
$$

The solutions with separated variables of the homogeneous part of the BVP are:

$$
u_{n}(x, t)=\mathrm{e}^{-\left(\frac{n \pi}{2}\right)^{2} t} \sin \frac{n \pi x}{2} .
$$

The series representation of the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{-\left(\frac{n \pi}{2}\right)^{2} t} \sin \frac{n \pi x}{2}
$$

The nonhomogeneous condition $u(x, 0)=f(x)$ gives

$$
f(x)=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi x}{2} .
$$

Therefore

$$
C_{n}=\int_{0}^{2} f(x) \sin \frac{n \pi x}{2} d x=\int_{0}^{1} \sin \frac{n \pi x}{2} d x=\frac{2}{n \pi}\left(1-\cos \frac{n \pi}{2}\right)
$$

The solution of the BVP is:

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-\cos \frac{n \pi}{2}\right) \mathrm{e}^{-\left(\frac{n \pi}{2}\right)^{2} t} \sin \frac{n \pi x}{2}
$$

Exercise 10. Solve the BVP

$$
\begin{cases}u_{t}=u_{x x}, & 0<x<2, \quad t>0 \\ u(0, t)=u(2, t)=0, & t>0 \\ u(x, 0)=\cos (\pi x), & 0<x<2\end{cases}
$$

Exercise 11. Solve the BVP

$$
\begin{cases}u_{t}+u=(0.1) u_{x x}, & 0<x<\pi, \quad t>0 \\ u_{x}(0, t)=u_{x}(\pi, t)=0, & t>0 \\ u(x, 0)=\sin x, & 0<x<\pi\end{cases}
$$

If $u(x, t)=X(t) T(t)$ is a nontrivial solution of (HP), then $X$ and $T$ solve the ODE problems

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X^{\prime}(0)=0, \quad X^{\prime}(\pi)=0
\end{array} \quad T^{\prime}(t)+(1+0.1 \lambda) T(t)=0 .\right.
$$

The eigenvalues and eigenfunctions of the $X$-problem are $\lambda_{n}=n^{2}, \quad X_{n}(x)=\cos (n x)$ with $n=0,1,2, \cdots$. The corresponding solutions of the $T-\operatorname{problem}$ are $T_{n}(t)=\mathrm{e}^{-\left(1+0.1 n^{2}\right) t}$. The series representation of the general solution is

$$
u(x, t)=C_{0} \mathrm{e}^{-t}+\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{-\left(1+0.1 n^{2}\right) t} \cos (n x)
$$

The nonhomogeneous condition gives

$$
u(x, 0)=\sin x=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos (n x)
$$

(cosine series of $\sin x$ over $[0, \pi]$ ). Hence

$$
C_{0}=\frac{1}{2} \frac{2}{\pi} \int_{0}^{\pi} \sin x d x=\frac{2}{\pi}, \quad C_{1}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos x d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (2 x) d x=0 .
$$

For $n \geq 2$, we get

$$
C_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi}[\sin ((n+1) x)-\sin ((n-1) x)] d x=\frac{2\left[(-1)^{n+1}-1\right]}{\pi\left(n^{2}-1\right)}
$$

Note that $C_{2 k+1}=0$ and $C_{2 k}=-\frac{4}{\pi\left(4 k^{2}-1\right)}$. The solution of the BVP is

$$
u(x, t)=\frac{2}{\pi} \mathrm{e}^{-t}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1} \mathrm{e}^{-\left(1+0.4 k^{2}\right) t} \cos (2 k x)
$$

Exercise 12. Consider the BVP modeling heat propagation in a rod where the end points are kept at constant temperatures $T_{1}$ and $T_{2}$ :

$$
\begin{cases}u_{t}=k u_{x x}, & 0<x<L, \quad t>0 \\ u(0, t)=T_{1}, u(L, t)=T_{2}, & t>0 \\ u(x, 0)=f(x), & 0<x<L\end{cases}
$$

Since $T_{1}$ and $T_{2}$ are not necessarily zero, we cannot apply directly the method of eigenfunctions expansion. To solve such a problem, we can proceed as follows.

1. Find a function $\alpha(x)$ (independent on time $t$ ) so that

$$
\alpha^{\prime \prime}(x)=0, \quad \alpha(0)=T_{1} \alpha(L)=T_{2} .
$$

2. Let $v(x, t)=u(x, t)-\alpha(x)$. Verify that if $u(x, t)$ solves the given BVP, then $v(x, t)$ solves the following problem

$$
\begin{cases}v_{t}=k v_{x x}, & 0<x<L, \quad t>0 \\ v(0, t)=0, v(L, t)=0, & t>0 \\ v(x, 0)=f(x)-\alpha(x), & 0<x<L\end{cases}
$$

The $v$-problem can be solved by the method of separation of variables. The solution $u$ of the original problem is therefore $u(x, t)=v(x, t)+\alpha(x)$.
Exercise 13. Apply the method of described in Exercise 12 to solve the problem

$$
\begin{cases}u_{t}=u_{x x}, & 0<x<2, \quad t>0 \\ u(0, t)=T_{1}, u(2, t)=T_{2}, & t>0 \\ u(x, 0)=f(x), & 0<x<2\end{cases}
$$

in the following cases

1. $T_{1}=100, T_{2}=0, f(x)=0$.
2. $T_{1}=100, T_{2}=100, f(x)=0$.
3. $T_{1}=0, T_{2}=100, f(x)=50 x$.

Consider the case 2: $T_{1}=100, T_{2}=100, f(x)=0$.
The function $\alpha(x)$ satisfies $\alpha^{\prime \prime}(x)=0, \alpha(0)=100, \alpha(2)=100$. It follows that $\alpha(x)=100$.
Let $v(x, t)=u(x, t)-\alpha(x)$. The function $v$ satisfies the following BVP

$$
\begin{cases}v_{t}=v_{x x}, & 0<x<2, \quad t>0 \\ v(0, t)=0, v(2, t)=0, & t>0 \\ v(x, 0)=-100, & 0<x<2\end{cases}
$$

The solutions with separated variables of the homogeneous part are $\mathrm{e}^{-\frac{\pi^{2} n^{2}}{4} t} \sin \frac{n \pi x}{2}$ with $n \in \mathbb{Z}^{+}$. The series representation of the general solution is

$$
v(x, t)=\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{-\frac{\pi^{2} n^{2}}{4} t} \sin \frac{n \pi x}{2} .
$$

The nonhomogeneous condition implie

$$
v(x, 0)=-100=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi x}{2} .
$$

Therefore $C_{n}=\int_{0}^{2}(-100) \sin \frac{n \pi x}{2} d x=\frac{200\left[(-1)^{n}-1\right]}{n \pi}$. Hence

$$
v(x, t)=\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{\left[(-1)^{n}-1\right]}{n} \mathrm{e}^{-\frac{\pi^{2} n^{2}}{4} t} \sin \frac{n \pi x}{2}=\frac{-400}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} \mathrm{e}^{-\frac{\pi^{2}(2 k+1)^{2}}{4} t} \sin \frac{(2 k+1) \pi x}{2} .
$$

The solution $u(x, t)=v(x, t)+\alpha(x)$ of the original BVP is

$$
u(x, t)=100-\frac{400}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} \mathrm{e}^{-\frac{\pi^{2}(2 k+1)^{2}}{4} t} \sin \frac{(2 k+1) \pi x}{2} .
$$

In problems 14 to 16 , solve the wave propagation problem

$$
\begin{cases}u_{t t}=c^{2} u_{x x}, & 0<x<L, \quad t>0 \\ u(0, t)=0, u(L, t)=0, & t>0 \\ u(x, 0)=f(x), u_{t}(x, 0)=g(x) & 0<x<L\end{cases}
$$

Exercise 14. $c=1, L=2, f(x)=0, g(x)= \begin{cases}x & \text { if } 0<x<1 \\ 2-x & \text { if } 1<x<2\end{cases}$
Exercise 15. $c=1 / \pi, L=2, f(x)=\sin (\pi x), g(x)= \begin{cases}x & \text { if } 0<x<1 \\ 2-x & \text { if } 1<x<2\end{cases}$
The BVP in this case is

$$
\begin{cases}u_{t t}=\frac{1}{\pi^{2}} u_{x x}, & 0<x<2, t>0 \\ u(0, t)=0, u(2, t)=0, & t>0 \\ u(x, 0)=\sin (\pi x), u_{t}(x, 0)=g(x) & 0<x<2\end{cases}
$$

The solutions with separated variables of the homogeneous part are

$$
\cos \frac{n t}{2} \sin \frac{n \pi x}{2}, \quad \sin \frac{n t}{2} \sin \frac{n \pi x}{2}, \quad n \in \mathbb{Z}^{+}
$$

The series representation of the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \frac{n t}{2}+B_{n} \sin \frac{n t}{2}\right] \sin \frac{n \pi x}{2}
$$

We have

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} \frac{n}{2}\left[-A_{n} \sin \frac{n t}{2}+B_{n} \cos \frac{n t}{2}\right] \sin \frac{n \pi x}{2}
$$

The nonhomogeneous conditions imply that

$$
u(x, 0)=\sin (\pi x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{2} \quad \text { and } \quad u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \frac{n}{2} B_{n} \sin \frac{n \pi x}{2}
$$

Therefore,

$$
A_{n}=0 \text { for } n \neq 2 \text { and } A_{2}=1,
$$

and

$$
\frac{n}{2} B_{n}=\int_{0}^{2} g(x) \sin \frac{n \pi x}{2} d x=\int_{0}^{1} x \sin \frac{n \pi x}{2} d x+\int_{1}^{2}(2-x) \sin \frac{n \pi x}{2} d x
$$

An integration by parts gives

$$
\frac{n}{2} B_{n}=\frac{8 \sin (n \pi / 2)}{\pi^{2} n^{2}} \Longrightarrow B_{n}=\frac{16 \sin (n \pi / 2)}{\pi^{2} n^{3}}
$$

The solution of the BVP is

$$
u(x, t)=\cos t \sin (\pi x)+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{n^{3}} \sin \frac{n t}{2} \sin \frac{n \pi x}{2}
$$

Exercise 16. $c=2, L=\pi, f(x)=x \sin x, g(x)=\sin (2 x)$.
In exercises 17 to 19, solve the wave propagation problem with damping

$$
\begin{cases}u_{t t}+2 a u_{t}=c^{2} u_{x x}, & 0<x<L, \quad t>0 \\ u(0, t)=0, u(L, t)=0, & t>0 \\ u(x, 0)=f(x), u_{t}(x, 0)=g(x) & 0<x<L\end{cases}
$$

Exercise 17. $c=1, a=.5, L=\pi, f(x)=0, g(x)=x$
The BVP is

$$
\begin{cases}u_{t t}+u_{t}=u_{x x}, & 0<x<\pi, \quad t>0 \\ u(0, t)=0, u(\pi, t)=0, & t>0 \\ u(x, 0)=0, u_{t}(x, 0)=x & 0<x<\pi\end{cases}
$$

If $u(x, t)=X(x) T(t)$ is a nontrivial solution of the homogeneous part, then $X(x)$ and $T(t)$ solve the ODE problems

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0, \quad X(\pi)=0
\end{array}, \quad\left\{\begin{array}{l}
T^{\prime \prime}(t)+T^{\prime}(t)+\lambda T(t)=0 \\
T(0)=0
\end{array}\right.\right.
$$

where $\lambda$ is the separation constant. The eigenvalues and eigenfunctions of the SL problem ( $X$-problem) are

$$
\lambda_{n}=n^{2}, \quad X_{n}=\sin (n x) \quad n \in \mathbb{Z}^{+} .
$$

For each eigenvalue $\lambda_{n}$, thew corresponding $T$-problem has characteristic equation

$$
m^{2}+m+n^{2}=0 \quad \Longrightarrow \quad m=\frac{-1}{2} \pm i \omega_{n} \text { with } \omega_{n}=\frac{\sqrt{4 n^{2}-1}}{2}
$$

The $T$-problem has one independent solution given by $T_{n}(t)=\mathrm{e}^{-t / 2} \sin \left(\omega_{n} t\right)$. The solutions with separated variables of the homogeneous part are $\mathrm{e}^{-t / 2} \sin \left(\omega_{n} t\right) \sin (n x)$ and a series representation of the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{-t / 2} \sin \left(\omega_{n} t\right) \sin (n x) .
$$

We have

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} \mathrm{e}^{-t / 2}\left[\frac{-C_{n}}{2} \sin \left(\omega_{n} t\right)+\omega_{n} C_{n} \cos \left(\omega_{n} t\right)\right] \sin (n x) .
$$

So

$$
u_{t}(x, 0)=x=\sum_{n=1}^{\infty} \omega_{n} C_{n} \sin (n x) \Longrightarrow \omega_{n} C_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x=\frac{2(-1)^{n+1}}{n}
$$

Thus $C_{n}=\frac{2(-1)^{n+1}}{n \omega_{n}}$ and the solution of the BVP is

$$
u(x, t)=\mathrm{e}^{-t / 2} \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \omega_{n}} \sin \left(\omega_{n} t\right) \sin (n x) .
$$

Exercise 18. $c=4, a=\pi, L=1, f(x)=x(1-x), g(x)=0$.
Exercise 19. $c=1, a=\pi / 6, L=2, f(x)=x \sin (\pi x), g(x)=1$.

The BVP is

$$
\begin{cases}u_{t t}+\frac{\pi}{3} u_{t}=u_{x x}, & 0<x<2, t>0 \\ u(0, t)=0, u(2, t)=0, & t>0 \\ u(x, 0)=x \sin (\pi x), u_{t}(x, 0)=1 & 0<x<2\end{cases}
$$

If $u(x, t)=X(x) T(t)$ is a nontrivial solution of the homogeneous part, then $X(x)$ and $T(t)$ solve the ODE problems

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0, \quad X(2)=0
\end{array}, \quad T^{\prime \prime}(t)+\frac{\pi}{3} T^{\prime}(t)+\lambda T(t)=0\right.
$$

where $\lambda$ is the separation constant. The eigenvalues and eigenfunctions of the SL problem ( $X$-problem) are

$$
\lambda_{n}=\left(\frac{n \pi}{2}\right)^{2}, \quad X_{n}=\sin \frac{n \pi x}{2} \quad n \in \mathbb{Z}^{+} .
$$

For each eigenvalue $\lambda_{n}$, thew corresponding $T$-problem has characteristic equation

$$
m^{2}+\frac{\pi}{3} m+\left(\frac{n \pi}{2}\right)^{2}=0 \quad \Longrightarrow \quad m=\frac{-\pi}{6} \pm i \omega_{n} \text { with } \omega_{n}=\frac{\sqrt{9 n^{2}-1} \pi}{3}
$$

The $T$-problem has two independent solutions given by $T_{n, 1}(t)=\mathrm{e}^{-\pi t / 6} \cos \left(\omega_{n} t\right)$ and $T_{n, 2}(t)=$ $\mathrm{e}^{-\pi t / 6} \sin \left(\omega_{n} t\right)$. The solutions with separated variables of the homogeneous part are $T_{n, 1}(t) X_{n}(x)$ and $T_{n, 2}(t) X_{n}(x)$. The series representation of the general solution is

$$
u(x, t)=\mathrm{e}^{-\pi t / 6} \sum_{n=1}^{\infty}\left[A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right] \sin \frac{n \pi x}{2} .
$$

We have

$$
u_{t}(x, t)=\mathrm{e}^{-\pi t / 6} \sum_{n=1}^{\infty}\left[\left(\omega_{n} B_{n}-\frac{\pi}{6} A_{n}\right) \cos \left(\omega_{n} t\right)-\left(\omega_{n} A_{n}+\frac{\pi}{6} B_{n}\right) \sin \left(\omega_{n} t\right)\right] \sin \frac{n \pi x}{2} .
$$

The initial conditions are

$$
u(x, 0)=x \sin (\pi x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{2}, \quad u_{t}(x, 0)=1=\sum_{n=1}^{\infty}\left(\omega_{n} B_{n}-\frac{\pi}{6} A_{n}\right) \sin \frac{n \pi x}{2} .
$$

Thus

$$
A_{n}=\int_{0}^{2} x \sin (\pi x) \sin \frac{n \pi x}{2} d x \quad \text { and } \quad \omega_{n} B_{n}-\frac{\pi}{6} A_{n}=\int_{0}^{2} \sin \frac{n \pi x}{2} d x
$$

Using integration by parts we find

$$
A_{1}=\frac{-32}{9 \pi^{2}}, \quad A_{2}=1, \quad \text { and } \quad A_{n}=\frac{16}{\pi^{2}} \frac{\left[(-1)^{n}-1\right] n}{\left(n^{2}-4\right)^{2}} \text { for } n \geq 3 .
$$

Then

$$
B_{1}=\frac{92}{27 \pi \omega_{1}}, \quad B_{2}=\frac{\pi}{6 \omega_{2}}, \quad \text { and } \quad B_{n}=\frac{\left[(-1)^{n}-1\right]\left(8 n^{2}-6\left(n^{2}-4\right)^{2}\right)}{\pi \omega_{n} n\left(n^{2}-4\right)^{2}} \text { for } n \geq 3
$$

The solution of the BVP is

$$
\begin{gathered}
u(x, t)=\mathrm{e}^{-t / 2}\left[\frac{-32}{9 \pi^{2}} \cos \left(\omega_{1} t\right)+\frac{92}{27 \pi \omega_{1}} \sin \left(\omega_{1} t\right)\right] \sin \frac{\pi x}{2}+\mathrm{e}^{-t / 2}\left[\cos \left(\omega_{2} t\right)+\frac{\pi}{6 \omega_{2}} \sin \left(\omega_{2} t\right)\right] \sin \pi x+ \\
+\mathrm{e}^{-t / 2} \sum_{n=2}^{\infty}\left[\frac{16}{\pi^{2}} \cos \left(\omega_{n} t\right)+\frac{8 n^{2}-6\left(n^{2}-4\right)^{2}}{\pi n \omega_{n}} \sin \left(\omega_{n} t\right)\right] \frac{(-1)^{n}-1}{\left(n^{2}-4\right)^{2}} \sin \frac{n \pi x}{2} .
\end{gathered}
$$

In exercises 20 to 22 , solve the Laplace equation $\Delta u(x, y)=0$ inside the rectangle $0<x<L$, $0<y<H$ subject the the given boundary conditions.
Exercise 20. $L=H=\pi, u(x, 0)=x(\pi-x), u(x, \pi)=0, u(0, y)=u(\pi, y)=0$.
Exercise 21. $L=\pi, H=2 \pi, u(x, 0)=0, u(x, 2 \pi)=x, u_{x}(0, y)=\sin y, u_{x}(\pi, y)=0$.
The BVP is

$$
\begin{cases}u_{x x}+u_{y y}, & 0<x<\pi, \quad 0<y<2 \pi \\ u(x, 0)=0, u(x, 2 \pi)=x, & 0<y<2 \pi \\ u_{x}(0, y)=\sin y, u_{x}(\pi, y)=0 & 0<y<2 \pi\end{cases}
$$

Seek solution $u$ as $u=v+w$, where $v(x, y)$ and $w(x, y)$ solve the following BVP, respectively.

$$
(*)\left\{\begin{array} { l } 
{ v _ { x x } + v _ { y y } , } \\
{ v ( x , 0 ) = 0 , v ( x , 2 \pi ) = x , } \\
{ v _ { x } ( 0 , y ) = 0 , v _ { x } ( \pi , y ) = 0 }
\end{array} \quad \text { and } \quad ( * * ) \left\{\begin{array}{l}
w_{x x}+w_{y y}, \\
w(x, 0)=0, w(x, 2 \pi)=0 \\
w_{x}(0, y)=\sin y, w_{x}(\pi, y)=0
\end{array}\right.\right.
$$

- $v$-problem: If $v(x, t)=X(x) Y(y)$ is a nontrivial solution the homogeneous part of $(*)$, then $X$ and $Y$ solve the ODE problems

$$
\left\{\begin{array} { l } 
{ X ^ { \prime \prime } + \lambda X = 0 } \\
{ X ^ { \prime } ( 0 ) = 0 , \quad X ^ { \prime } ( \pi ) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
Y^{\prime \prime}-\lambda Y=0 \\
Y(0)=0
\end{array}\right.\right.
$$

The eigenvalues and eigenfunctions of the $X$-problem are

$$
\lambda_{n}=n^{2}, \quad X_{n}(x)=\cos (n x), \quad n=0,1,2, \cdots
$$

The corresponding solutions of the $Y$-problem are

$$
Y_{0}(y)=y \text { for } n=0, \quad \text { and } \quad Y_{n}(y)=\sinh (n y) \text { for } n=1,2,3 \cdots
$$

The general series solution of BVP (*) is

$$
v(x, y)=C_{0} y+\sum_{n=1}^{\infty} C_{n} \sinh (n y) \cos (n x)
$$

The nonhomogeneous condition gives

$$
v(x, 2 \pi)=x=2 \pi C_{0}+\sum_{n=1}^{\infty} C_{n} \sinh (2 \pi n) \cos (n x) .
$$

Hence

$$
4 \pi C_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi \quad \Longrightarrow \quad C_{0}=\frac{1}{4}
$$

and for $n \geq 1$

$$
C_{n} \sinh (2 \pi n)=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x \quad \Longrightarrow \quad C_{n}=\frac{2\left[(-1)^{n}-1\right]}{\pi n^{2} \sinh (2 \pi n)}
$$

The solution of BVP $(*)$ is

$$
v(x, y)=\frac{y}{4}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \frac{\sinh (n y)}{\sinh (2 \pi n)} \cos (n x)
$$

- $w$-problem: If $w(x, t)=X(x) Y(y)$ is a nontrivial solution the homogeneous part of $(* *)$, then $X$ and $Y$ solve the ODE problems

$$
\left\{\begin{array} { l } 
{ Y ^ { \prime \prime } + \lambda Y = 0 } \\
{ Y ( 0 ) = 0 , \quad Y ( 2 \pi ) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
X^{\prime \prime}-\lambda X=0 \\
X^{\prime}(\pi)=0
\end{array}\right.\right.
$$

The eigenvalues and eigenfunctions of the $Y$-problem are

$$
\lambda_{n}=\left(\frac{n}{2}\right)^{2}, \quad Y_{n}(y)=\sin \frac{n y}{2}, \quad n=1,2,3, \cdots
$$

The corresponding solutions of the $X$-problem are

$$
X_{n}(y)=\cosh \frac{n(x-\pi)}{2} \text { for } n=1,2,3 \cdots
$$

The general series solution of BVP $(*)$ is

$$
w(x, y)=\sum_{n=1}^{\infty} C_{n} \cosh \frac{n(x-\pi)}{2} \sin \frac{n y}{2} .
$$

We have

$$
w_{x}(x, y)=\sum_{n=1}^{\infty} \frac{n C_{n}}{2} \sinh \frac{n(x-\pi)}{2} \sin \frac{n y}{2} .
$$

The nonhomogeneous condition gives

$$
w_{x}(0, y)=\sin y=\sum_{n=1}^{\infty} \frac{-n C_{n}}{2} \sinh \frac{n \pi}{2} \sin \frac{n y}{2} .
$$

Hence

$$
C_{n}=0 \text { if } n \neq 2 \text { and }-C_{2} \sinh \pi=1
$$

The solution of BVP $(* *)$ is

$$
w(x, y)=-\frac{\cosh (x-\pi)}{\sinh \pi} \sin y .
$$

- The solution $u$ of the original BVP is

$$
u(x, y)=w(x, y)+v(x, y)=-\frac{\cosh (x-\pi)}{\sinh \pi} \sin y+\frac{y}{4}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \frac{\sinh (n y)}{\sinh (2 \pi n)} \cos (n x)
$$

Exercise 22. $L=H=1, u(x, 0)=u(x, 1)=0, u(0, y)=1, u(1, y)=\sin y$.
Exercise 23. Solve the Laplace equation $\Delta u(r, \theta)=0$ inside the semicircle of radius $2(0<$ $r<2,0<\theta<\pi)$ subject to the boundary conditions

$$
u(r, 0)=u(r, \pi)=0 \quad(0<r<2) \quad \text { and } \quad u(2, \theta)=\theta(\pi-\theta) \quad(0<\theta<\pi)
$$

If $u(r, \theta)=R(r) \Theta(\theta)$ is a nontrivial solution of the homogeneous part, then $R$ and $\Theta$ solve the ODE problems:

$$
\left\{\begin{array} { l } 
{ \Theta ^ { \prime \prime } ( \theta ) + \lambda \Theta ( \theta ) = 0 } \\
{ \Theta ( 0 ) = 0 , \quad \Theta ( \pi ) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda R(r)=0 \\
R \text { bounded function }
\end{array} .\right.\right.
$$

where $\lambda$ is the separation constant. The eigenvalues and eigenfunctions of the $\Theta$-problem are:

$$
\lambda_{n}=n^{2}, \quad \Theta_{n}(\theta)=\sin (n \theta), \quad n \in \mathbb{Z}^{+} .
$$

The corresponding $R$-ODE is a Cauchy-Euler with independent solutions $r^{n}$ and $r^{-n}$. Since we are interested only in bounded solutions, the solution $r^{-n}$ is not bounded as $r \longrightarrow 0^{+}$and will be ignored. The solutions with separation of variables are

$$
u_{n}(r, \theta)=r^{n} \sin (n \theta) \quad n \in \mathbb{Z}^{+} .
$$

The series representation of the general solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty} C_{n} r^{n} \sin (n \theta)
$$

Use the nonhomogeneous condition to find the constants $C_{n}$.

$$
u(2, \theta)=\theta(\pi-\theta)=\sum_{n=1}^{\infty} 2^{n} C_{n} \sin (n \theta) \Longrightarrow 2^{n} C_{n}=\frac{2}{\pi} \int_{0}^{\pi} \theta(\pi-\theta) \sin (n \theta) d \theta
$$

An integration by parts gives $2^{n} C_{n}=\frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}}$. Therefore the solution of the BVP is

$$
u(r, \theta)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}} \frac{r^{n}}{2^{n}} \sin (n \theta)=\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{r^{2 k+1}}{2^{2 k+1}(2 k+1)^{3}} \sin ((2 k+1) \theta) .
$$

Exercise 24. Solve the Laplace equation $\Delta u(r, \theta)=0$ inside the semicircle of radius $2(0<$ $r<2,0<\theta<\pi)$ subject to the boundary conditions

$$
u_{\theta}(r, 0)=u_{\theta}(r, \pi)=0 \quad(0<r<2) \quad \text { and } \quad u(2, \theta)=\theta(\pi-\theta) \quad(0<\theta<\pi)
$$

Exercise 25. Solve the Laplace equation $\Delta u(r, \theta)=0$ inside the quarter of a circle of radius 2 ( $0<r<2,0<\theta<\pi / 2$ ) subject to the boundary conditions

$$
u(r, 0)=u(r, \pi / 2)=0 \quad(0<r<2) \quad \text { and } \quad u(2, \theta)=\theta \quad(0<\theta<\pi / 2)
$$

If $u(r, \theta)=R(r) \Theta(\theta)$ is a nontrivial solution of the homogeneous part, then $R$ and $\Theta$ solve the ODE problems:

$$
\left\{\begin{array} { l } 
{ \Theta ^ { \prime \prime } ( \theta ) + \lambda \Theta ( \theta ) = 0 } \\
{ \Theta ( 0 ) = 0 , \quad \Theta ( \pi / 2 ) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda R(r)=0 \\
R \text { bounded function }
\end{array}\right.\right.
$$

where $\lambda$ is the separation constant. The eigenvalues and eigenfunctions of the $\Theta$-problem are:

$$
\lambda_{n}=(2 n)^{2}, \quad \Theta_{n}(\theta)=\sin (2 n \theta), \quad n \in \mathbb{Z}^{+}
$$

The corresponding $R$-ODE is a Cauchy-Euler with independent solutions $r^{2 n}$ and $r^{-2 n}$. Since we are interested only in bounded solutions, the solution $r^{-2 n}$ is not bounded as $r \longrightarrow 0^{+}$and will be ignored. The solutions with separation of variables are

$$
u_{n}(r, \theta)=r^{2 n} \sin (2 n \theta) \quad n \in \mathbb{Z}^{+}
$$

The series representation of the general solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty} C_{n} r^{2 n} \sin (2 n \theta)
$$

Use the nonhomogeneous condition to find the constants $C_{n}$.

$$
u(2, \theta)=\theta=\sum_{n=1}^{\infty} 2^{2 n} C_{n} \sin (2 n \theta) \Longrightarrow 2^{2 n} C_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} \theta \sin (2 n \theta) d \theta
$$

An integration by parts gives $2^{2 n} C_{n}=\frac{(-1)^{n+1}}{n}$. Therefore the solution of the BVP is

$$
u(r, \theta)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{r^{2 n}}{2^{2 n}} \sin (2 n \theta) .
$$

