
STURM-LIOUVILLE PROBLEMS:
GENERALIZED FOURIER SERIES

1. Exercises

For exercises 1 to 4: (a) find the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lems; (b) find the generalized Fourier series of the functions f(x) = 1 and g(x) = x.

Exercise 1. y′′ + λy = 0, 0 < x < 1, y(0) = 0 and y′(1) = 0

It can be shown that the eigenvalues and eigenfunctions are

λn = ν2
n =

(
(2n+ 1)π

2

)2

and yn(x) = sin(νnx) with n = 0, 1, 2, · · ·

We have

∥sin(νnx)∥2 =
∫ 1

0

sin(νnx)
2 dx =

1

2

[
x− sin(2νnx

2νn

]1
0

=
1

2

The generalized Fourier series of f(x) = 1 is
∞∑
n=0

cn sin(νnx) with

cn =
⟨1, sin(νnx)⟩
∥sin(νnx)∥2

= 2

∫ 1

0

sin(νnx) dx =
−2

νn
[cos(νnx)]

1
0 =

2

νn
=

4

(2n+ 1)π

Therefore, for x ∈ (0, 1)

1 =
4

π

∞∑
0

1

2n+ 1
sin

(2n+ 1)π x

2
.

The generalized Fourier series of g(x) = x is
∞∑
n=0

cn sin(νnx) with

cn =
⟨x, sin(νnx)⟩
∥sin(νnx)∥2

= 2

∫ 1

0

x sin(νnx) dx = 2

[
−x cos(νnx)

νn
+

sin(νnx)

ν2
n

]1
0

=
2 sin(νn)

ν2
n

=
8(−1)n

(2n+ 1)2π2

Therefore, for x ∈ (0, 1)

x =
8

π2

∞∑
0

(−1)n

(2n+ 1)2
sin

(2n+ 1)π x

2
.

Exercise 2. y′′+λy = 0, −1 < x < 1, y(−1) = y(1) and y′(−1) = y′(1) (periodic SL problem)

Exercise 3. y′′ + λy = 0, 0 < x < 1, y(0) = 0 and y(1) + 2y′(1) = 0

It can be shown that λ ≤ 0 cannot be an eigenvalue of the SL-problem. For λ > 0, set λ = ν2

with ν > 0, then the general solution of the ODE is y(x) = A cos(νx)+B sin(νx). The condition
y(0) = 0 implies A = 0. The condition y(1)+2y′(1) = 0 leads to B(sin ν+2ν cos ν) = 0. In order
to have a nontrivial solution y, the parameter ν must satisfy sin ν+2ν cos ν = 0 or equivalently
tan ν = −2ν (see figure). The eigenvalues and eigenfunctions are
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Figure 1. Positive solutions of tan ν = −2ν

λn = ν2
n and yn(x) = sin(νnx) with νn is the nthroot of tan ν = −2ν

The norms of eigenfunctions are

∥sin(νnx)∥2 =

∫ 1

0

sin(νnx)
2 dx =

1

2

[
x− sin(2νnx

2νn

]1
0

=
1

2

(
1− sin(2νn)

2νn

)
=

1 + 2 cos2 νn
2

The generalized Fourier series of f(x) = 1 is
∞∑
n=0

cn sin(νnx) with

cn =
⟨1, sin(νnx)⟩
∥sin(νnx)∥2

=
2

1 + 2 cos2(νn)

∫ 1

0

sin(νnx) dx =
2(1− cos νn)

νn(1 + 2 cos2(2νn)

Therefore, for x ∈ (0, 1)

1 =
∞∑
n=1

2(1− cos νn)

νn(1 + 2 cos2(2νn)
sin(νnx)

The generalized Fourier series of g(x) = x is
∞∑
n=0

cn sin(νnx) with

cn =
⟨x, sin(νnx)⟩
∥sin(νnx)∥2

=
2

1 + 2 cos2(νn)

∫ 1

0

x sin(νnx) dx

=
2

1 + 2 cos2(νn)

[
−x cos(νnx)

νn
+

sin(νnx)

ν2
n

]1
0

=
2(−νn cos νn + sin νn)

ν2
n(1 + 2 cos2(νn))

=
3 sin νn

ν2
n(1 + 2 cos2 νn)

Therefore, for x ∈ (0, 1)

x =
∞∑
0

3 sin νn
ν2
n(1 + 2 cos2 νn)

sin(νnx).

Exercise 4. y′′ + λy = 0, 0 < x < 1, y(0) = y′(0) and y(1) = y′(1)

Exercise 5. Consider the problem

x2y′′ + xy′ + λy = 0, 1 < x < L, y(1) = 0, y(L) = 0,

with L > 1.
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(1) Put the ODE in adjoint form: (py′)′ + (q + λr)y = 0 (Hint : multiply by 1/x).
(2) What is the inner product related to this problem?
(3) Find the eigenvalues and eigenfunctions (note: the ODE is Cauchy-Euler).
(4) Find the generalized Fourier series of the function f(x) = 1 (Hint : when computing the

Fourier coefficients cj, you can use the substitution t = ln x in the integral).
(5) Same question for the function g(x) = x.

(1) Adjoint form of the DE: (xy′)′ +
λ

x
y = 0.

(2) The weight associated with the SL-problem is r(x) =
1

x
and the inner product is defined

by

⟨f, g⟩r =
∫ L

1

f(x)g(x)
1

x
dx.

(3) Note that the DE is Cauchy-Euler with characteristic equation m2 + λ = 0. Consider 3
cases.

• If λ < 0, set λ = −ν2 with ν > 0. The general solution of the DE is y(x) = Axν +
Bx−ν . The condition y(1) = 0 and y(L) = 0 imply A+B = 0 and ALν +BL−ν = 0
since L > 0, ν > 0, then the only solution is A = B = 0 and λ < 0 cannot be an
eigenvalue.

• If λ = 0. The general solution of the DE is y(x) = A + B lnx. The condition
y(1) = 0 and y(L) = 0 imply A = 0 and B lnL = 0 (B = 0). Again λ = 0 is not an
eigenvalue.

• If λ > 0, set λ = ν2 with ν > 0. The general solution of the DE is y(x) =
A cos(ν lnx) + B sin(ν lnx). The condition y(1) = 0 gives A = 0. Then y(L) =
0 implies B sin(ν lnL) = 0. To obtain y nontrivial, we need B ̸= 0 and then
sin(ν lnL) = 0. Therefore ν lnL = nπ with n ∈ Z+.

The eigenvalues and eigenfunctions are:

λn = ν2
n =

( nπ

lnL

)2

, yn(x) = sin(νn lnx) = sin

(
nπ

lnx

lnL

)
, n ∈ Z+

(4) The norms of the eigenfunctions are

∥yn∥2 = ⟨yn, yn⟩r =
∫ L

1

sin2(νn lnx)
dx

x
=

∫ L

1

sin2

(
nπ

lnx

lnL

)
dx

x
.

To compute the integral, we use the substitution t = ln x so that dt =
dx

x
and obtain

∥yn∥2 =
∫ lnL

0

sin2
( nπ

lnL
t
)
dt =

lnL

2

• Expansion of f(x) = 1 in yn’s: We have 1 =
∞∑
n=1

cnyn(x) with

cn =
⟨1, yn⟩r
∥yn∥2

=
2

lnL
⟨1, yn⟩r =

2

lnL

∫ L

1

sin(νn lnx)
dx

x

=
2

lnL

∫ lnL

0

sin
( nπ

lnL
t
)
dt =

2(1− (−1)n)

nπ
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Hence

1 =
2

π

∞∑
n=1

1− (−1)n

n
sin

(
nπ

lnx

lnL

)

• Expansion of g(x) = x in yn’s: We have x =
∞∑
n=1

cnyn(x) with

cn =
⟨x, yn⟩r
∥yn∥2

=
2

lnL
⟨x, yn⟩r =

2

lnL

∫ L

1

x sin(νn lnx)
dx

x

=
2

lnL

∫ lnL

0

et sin
( nπ

lnL
t
)
dt

Since

∫
et sin(at)dt =

et [sin(at)− a cos(at)]

1 + a2
+ C, then

cn =
nπ [1− (−1)nL]

ln2 L+ n2π2

and

x =
∞∑
n=1

nπ [1− (−1)nL]

ln2 L+ n2π2
sin

(
nπ

lnx

lnL

)
Exercise 6. Same questions as in Exercise 5 for the SL-problem

x2y′′ + xy′ + λy = 0, 1 < x < L, y′(1) = 0, y′(L) = 0,

Exercise 7. Solve the BVP

ut = 2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
2u(π, t) + ux(π, t) = 0 t > 0
u(x, 0) = sin x 0 < x < π

We proceed by finding solutions with separated variables u(x, t) = X(x)T (t) of the homogeneous
part. This leads to the following ODE problems for X and T , where λ is the separation constant: X ′′(x) + λX(x) = 0

X(0) = 0, 2X(π) +X ′(π) = 0
, T ′(t) + 2λT (t) = 0 .

It can be verified that λ ≤ 0 cannot be an eigenvalue of the X-problem. For λ > 0, set
λ = ν2 with ν > 0. The general solution of the ODE is X(x) = A cos(νx) + B sin(νx).
The condition X(0) = 0 implies A = 0. Then the condition 2X(π) + X ′(π) = 0 leads to
B(2 sin(νπ) + ν cos(νπ)) = 0. For B ̸= 0, ν needs to satisfy 2 sin(νπ) + ν cos(νπ) = 0 or

tan(νπ) = −ν

2
. This equation has infinitely many solutions, for every n ∈ Z+, the equation

has a unique solution νn in the interval

(
2n− 1

2
,

2n+ 1

2

)
(see figure). The eigenvalues and

eigenfunctions of the X-problem are:

λn = ν2
n, with νn ∈

(
2n− 1

2
,

2n+ 1

2

)
tan(νnπ) = −νn

2
, and Xn(x) = sin(νnx).

The corresponding solutions of the T -problem are Tn(t) = e−2ν2nt. The solutions with separated
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Figure 2. Positive solutions of tan(νπ) = −ν/2

variables of the homogeneous part of the BVP are e−2ν2nt sin(νnx). The series representation of
the general solution of the HP is

u(x, t) =
∞∑
n=1

cne
−2ν2nt sin(νnx) .

In order for u to satisfy the completed BVP, we need to have

u(x, 0) = sin x =
∞∑
n=1

cn sin(νnx).

The series is the generalized Fourier expansion of sinx in eigenfunctions of the X-problem. Thus

cn =
⟨sinx, sin(νnx)⟩
∥sin(νnx)∥2

.

We have

∥sin(νnx)∥2 =

∫ π

0

sin2(νnx) dx =
1

2

∫ π

0

(1− cos(2νnx)) dx

=
1

2

(
π − sin(2νnπ)

2νn

)
=

2π + cos2(νnπ)

4
.

and

⟨sinx, sin(νnx)⟩ =

∫ π

0

sinx sin(νnx) dx =
1

2

∫ π

0

[cos(νn − 1)x− cos(νn + 1)x] dx

=
− sin(νnπ)

2(νn − 1)
+

sin(νnπ)

2(νn + 1)
=

− sin(νnπ)

ν2
n − 1

.

Hence cn =
−4 sin(νnπ)

(ν2
n − 1)(2π + cos2(νnπ))

and the solution of the BVP is

u(x, t) = −4
∞∑
n=1

sin(νnπ)

(ν2
n − 1)(2π + cos2(νnπ))

e−2ν2nt sin(νnx) .

Exercise 8. Solve the BVP

ut = uxx 0 < x < π, t > 0,
ux(0, t) = 0 t > 0
u(π, t) = ux(π, t) t > 0
u(x, 0) = 1 0 < x < π
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Exercise 9. Solve the BVP

utt = c2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
u(π, t)− ux(π, t) = 0 t > 0
u(x, 0) = sin x 0 < x < π
ut(x, 0) = 0 0 < x < π

We proceed by finding solutions with separated variables u(x, t) = X(x)T (t) of the homogeneous
part. This leads to the following ODE problems for X and T , where λ is the separation constant: X ′′(x) + λX(x) = 0

X(0) = 0, X(π) = X ′(π)
,

 T ′′(t) + c2λT (t) = 0 ,

T ′(0) = 0
.

To find the eigenvalues of the X-problem, we consider three cases.

• λ < 0. Set λ = −µ2 with µ > 0. In this case the general solution of the ODE is
X(x) = A cosh(µx) + B sinh(µx). The condition X(0) = 0 implies A = 0, then the
second condition leads to B sinh(µπ) = Bµ cosh(µπ). For B ̸= 0, the parameter µ must

satisfy sinh(µπ) = µ cosh(µπ) or equivalently e2µπ =
1 + µ

1− µ
. This equation has a unique

positive solution µ0 with µ0 ∈ (0, 1). In fact µ0 ≈ 0.996. Hence λ0 = −µ2
0 is an

eigenvalue with corresponding eigenfunction X0(x) = sinh(µ0x).
• It can be verified that λ = 0 is not an eigenvalue.
• λ > 0. Set λ = ν2 with ν > 0. The general solution of the ODE is X(x) =
A cos(νx) + B sin(νx). The condition X(0) = 0 implies A = 0. Then the condition
X(π) = X ′(π) leads to B sin(νπ) = Bν cos(νπ)). For B ̸= 0, ν needs to satisfy
sin(νπ) = ν cos(νπ) or tan(νπ) = ν. This equation has infinitely many solutions, for

every n ∈ Z+, the equation has a unique solution νn in the interval

(
n,

2n+ 1

2

)
. The

eigenvalues and eigenfunctions of the X-problem are λn = ν2
n and the corresponding

eigenfunction Xn(x) = sin(νnx).

For the negative eigenvalue λ0 = −µ2
0, the corresponding T -equation becomes T ′′ − c2µ2

0T = 0
with general solution T (t) = A cosh(cµ0t) + B sinh(cµ0t). The condition T ′(0) = 0 implies
B = 0. The solution of HP of the BVP with separated variables is

u0(x, t) = cosh(cµ0t) sinh(µ0x).

For the positive eigenvalues λn = ν2
n, the corresponding T -equation becomes T ′′ + c2ν2

nT = 0
with general solution T (t) = A cos(cνnt) +B sin(cνnt). The condition T ′(0) = 0 implies B = 0.
The solution of HP of the BVP with separated variables is

un(x, t) = cos(cνnt) sin(νnx).

The series representation of the general solution of HP is therefore

u(x, t) = c0 cosh(cµ0t) sinh(µ0x) +
∞∑
n=1

cn cos(cνnt) sin(νnx).

Now we use the nonhomogeneous condition to find the constants cn’s so that u solves the
complete BVP.

u(x, 0) = sin x = c0 sinh(µ0x) +
∞∑
n=1

cn sin(νnx).

Therefore

c0 =
⟨sin x, sinh(µ0x)⟩
∥sinh(µ0x)∥2

and cn =
⟨sinx, sin(νnx)⟩
∥sin(νnx)∥2

.
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We have

∥sinh(µ0x)∥2 =

∫ π

0

sinh(µ0x)
2dx =

1

2

∫ π

0

[cosh(2µ0x)− 1] dx

=
sinh(2µ0π)

4µ0

− π

2
=

cosh2(µ0π)− π

2
;

∥sin(νnx)∥2 =

∫ π

0

sin(νnx)
2dx =

1

2

∫ π

0

[1− cos(2νnx)] dx

=
π

2
− sin(2νnπ)

4νn
=

π − cos2(νnπ)

2
;

⟨sinx, sinh(µ0x)⟩ =

∫ π

0

sin x sinh(µ0x)dx

=
µ2
0

1 + µ2
0

[
sin x cosh(µ0x)

µ0

− cosx sinh(µ0x)

µ2
0

]π
0

=
sinh(µ0π)

1 + µ2
0

;

⟨sinx, sin(νnx)⟩ =

∫ π

0

sinx sin(νnx)dx

=
1

1− ν2
n

[− cosx sin(νnx) + νn sinx cos(νnx)]
π
0

=
sin(νnπ)

1− ν2
n

.

Hence

c0 =
2 sinh(µ0π)

(1 + µ2
0)(cosh

2(µ0π)− π)
and cn =

2 sin(νnπ)

(1− ν2
n)(π − cos2(νnπ))

.

The solution of the BVP is:

u(x, t) =
2 sinh(µ0π) cosh(cµ0t) sinh(µ0x)

(1 + µ2
0)(cosh

2(µ0π)− π)
+

∞∑
n=1

2 sin(νnπ) cos(cνnt) sin(νnx)

(1− ν2
n)(π − cos2(νnπ))

Exercise 10. Solve the BVP

utt = c2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
u(π, t)− ux(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π
ut(x, 0) = f(x) 0 < x < π

where

f(x) =

{
0 if 0 < x < (π/2),
1 if (π/2) < x < π.
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Exercise 11. Solve the BVP (here a is a positive constant)

utt = uxx 0 < x < π, t > 0,
ux(0, t) = au(0, t) t > 0
ux(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π
ut(x, 0) = 1 0 < x < π

We proceed by finding solutions with separated variables u(x, t) = X(x)T (t) of the homogeneous
part. This leads to the following ODE problems for X and T , where λ is the separation constant: X ′′(x) + λX(x) = 0

X ′(0) = aX(0), X ′(π) = 0
,

 T ′′(t) + λT (t) = 0 ,

T (0) = 0
.

To find the eigenvalues of the X-problem, we consider three cases.

• λ < 0. Set λ = −µ2 with µ > 0. In this case the general solution of the ODE is
X(x) = A cosh(µx) + B sinh(µx). We have X ′(x) = µA sinh(µx) + µB cosh(µx). The
condition X ′(0) = aX(0) implies Bµ = Aa, then the second condition X ′(π) = 0 leads
to A(µ sinh(µπ)+a cosh(µπ)) = 0. Since µ > 0, a > 0, then µ sinh(µπ)+a cosh(µπ) > 0
and A = 0. This implies X = 0 and λ < 0 cannot be an eigenvalue.

• It can be verified that λ = 0 is not an eigenvalue.
• λ > 0. Set λ = ν2 with ν > 0. The general solution of the ODE is X(x) = A cos(νx) +
B sin(νx). We have X ′(x) = −νA sin(νx) + νB cos(νx) The condition X(0) = 0 implies
A = 0. Then the condition X ′(0) = aX(0) implies aA = νB. Then the condition
X ′(π) = 0 leads to A(a cos(νπ) − ν sin(νπ)) = 0. For A ̸= 0, ν needs to satisfy

ν sin(νπ) = a cos(νπ) or tan(νπ) =
a

ν
. This equation has infinitely many solutions, for

every n ∈ Z+, the equation has a unique solution νn in the interval

(
n− 1,

2n− 1

2

)
.

The eigenvalues and eigenfunctions of the X-problem are λn = ν2
n and the corresponding

eigenfunction Xn(x) = νn cos(νnx) + a sin(νnx).

For the eigenvalue λn = ν2
n, the corresponding T -equation becomes T ′′ + ν2

nT = 0 with general
solution T (t) = A cos(cνnt) + B sin(cνnt). The condition T (0) = 0 implies A = 0. The solution
of HP of the BVP with separated variables is

un(x, t) = sin(νnt) [νn cos(νnx) + a sin(νnx)] .

The series representation of the general solution of HP is therefore

u(x, t) =
∞∑
n=1

cn sin(νnt) [νn cos(νnx) + a sin(νnx)] .

Now we use the nonhomogeneous condition to find the constants cn’s so that u solves the
complete BVP. We have

ut(x, 0) = 1 =
∞∑
n=1

νncn [νn cos(νnx) + a sin(νnx)] .

Therefore

νncn =
⟨1, νn cos(νnx) + a sin(νnx)⟩
∥νn cos(νnx) + a sin(νnx)∥2

.
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Exercise 12. Solve the BVP

ut = (1 + x)2uxx 0 < x < 1, t > 0,
u(0, t) = 0 u(1, t) = 0 t > 0
u(x, 0) = x(1− x)

√
1 + x 0 < x < 1


