STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES

1. Exercises

For exercises 1 to 4: (a) find the eigenvalues and eigenfunctions of the Sturm-Liouville problems; (b) find the generalized Fourier series of the functions $f(x)=1$ and $g(x)=x$.
Exercise 1. $y^{\prime \prime}+\lambda y=0, \quad 0<x<1, y(0)=0$ and $y^{\prime}(1)=0$
It can be shown that the eigenvalues and eigenfunctions are

$$
\lambda_{n}=\nu_{n}^{2}=\left(\frac{(2 n+1) \pi}{2}\right)^{2} \quad \text { and } \quad y_{n}(x)=\sin \left(\nu_{n} x\right) \quad \text { with } \quad n=0,1,2, \cdots
$$

We have

$$
\left\|\sin \left(\nu_{n} x\right)\right\|^{2}=\int_{0}^{1} \sin \left(\nu_{n} x\right)^{2} d x=\frac{1}{2}\left[x-\frac{\sin \left(2 \nu_{n} x\right.}{2 \nu_{n}}\right]_{0}^{1}=\frac{1}{2}
$$

The generalized Fourier series of $f(x)=1$ is $\sum_{n=0}^{\infty} c_{n} \sin \left(\nu_{n} x\right)$ with

$$
c_{n}=\frac{\left\langle 1, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}}=2 \int_{0}^{1} \sin \left(\nu_{n} x\right) d x=\frac{-2}{\nu_{n}}\left[\cos \left(\nu_{n} x\right)\right]_{0}^{1}=\frac{2}{\nu_{n}}=\frac{4}{(2 n+1) \pi}
$$

Therefore, for $x \in(0,1)$

$$
1=\frac{4}{\pi} \sum_{0}^{\infty} \frac{1}{2 n+1} \sin \frac{(2 n+1) \pi x}{2} .
$$

The generalized Fourier series of $g(x)=x$ is $\sum_{n=0}^{\infty} c_{n} \sin \left(\nu_{n} x\right)$ with

$$
\begin{aligned}
c_{n} & =\frac{\left\langle x, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}}=2 \int_{0}^{1} x \sin \left(\nu_{n} x\right) d x=2\left[\frac{-x \cos \left(\nu_{n} x\right)}{\nu_{n}}+\frac{\sin \left(\nu_{n} x\right)}{\nu_{n}^{2}}\right]_{0}^{1} \\
& =\frac{2 \sin \left(\nu_{n}\right)}{\nu_{n}^{2}}=\frac{8(-1)^{n}}{(2 n+1)^{2} \pi^{2}}
\end{aligned}
$$

Therefore, for $x \in(0,1)$

$$
x=\frac{8}{\pi^{2}} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} \sin \frac{(2 n+1) \pi x}{2} .
$$

Exercise 2. $y^{\prime \prime}+\lambda y=0,-1<x<1, y(-1)=y(1)$ and $y^{\prime}(-1)=y^{\prime}(1)$ (periodic SL problem)
Exercise 3. $y^{\prime \prime}+\lambda y=0, \quad 0<x<1, \quad y(0)=0$ and $y(1)+2 y^{\prime}(1)=0$
It can be shown that $\lambda \leq 0$ cannot be an eigenvalue of the SL-problem. For $\lambda>0$, set $\lambda=\nu^{2}$ with $\nu>0$, then the general solution of the ODE is $y(x)=A \cos (\nu x)+B \sin (\nu x)$. The condition $y(0)=0$ implies $A=0$. The condition $y(1)+2 y^{\prime}(1)=0$ leads to $B(\sin \nu+2 \nu \cos \nu)=0$. In order to have a nontrivial solution y, the parameter ν must satisfy $\sin \nu+2 \nu \cos \nu=0$ or equivalently $\tan \nu=-2 \nu$ (see figure). The eigenvalues and eigenfunctions are

Date: February, 2021.

Figure 1. Positive solutions of $\tan \nu=-2 \nu$

$$
\lambda_{n}=\nu_{n}^{2} \quad \text { and } \quad y_{n}(x)=\sin \left(\nu_{n} x\right) \quad \text { with } \quad \nu_{n} \text { is the } n^{\text {th }} \text { root of } \tan \nu=-2 \nu
$$

The norms of eigenfunctions are

$$
\begin{aligned}
\left\|\sin \left(\nu_{n} x\right)\right\|^{2} & =\int_{0}^{1} \sin \left(\nu_{n} x\right)^{2} d x=\frac{1}{2}\left[x-\frac{\sin \left(2 \nu_{n} x\right.}{2 \nu_{n}}\right]_{0}^{1} \\
& =\frac{1}{2}\left(1-\frac{\sin \left(2 \nu_{n}\right)}{2 \nu_{n}}\right)=\frac{1+2 \cos ^{2} \nu_{n}}{2}
\end{aligned}
$$

The generalized Fourier series of $f(x)=1$ is $\sum_{n=0}^{\infty} c_{n} \sin \left(\nu_{n} x\right)$ with

$$
c_{n}=\frac{\left\langle 1, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}}=\frac{2}{1+2 \cos ^{2}\left(\nu_{n}\right)} \int_{0}^{1} \sin \left(\nu_{n} x\right) d x=\frac{2\left(1-\cos \nu_{n}\right)}{\nu_{n}\left(1+2 \cos ^{2}\left(2 \nu_{n}\right)\right.}
$$

Therefore, for $x \in(0,1)$

$$
1=\sum_{n=1}^{\infty} \frac{2\left(1-\cos \nu_{n}\right)}{\nu_{n}\left(1+2 \cos ^{2}\left(2 \nu_{n}\right)\right.} \sin \left(\nu_{n} x\right)
$$

The generalized Fourier series of $g(x)=x$ is $\sum_{n=0}^{\infty} c_{n} \sin \left(\nu_{n} x\right)$ with

$$
\begin{aligned}
c_{n} & =\frac{\left\langle x, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}}=\frac{2}{1+2 \cos ^{2}\left(\nu_{n}\right)} \int_{0}^{1} x \sin \left(\nu_{n} x\right) d x \\
& =\frac{2}{1+2 \cos ^{2}\left(\nu_{n}\right)}\left[\frac{-x \cos \left(\nu_{n} x\right)}{\nu_{n}}+\frac{\sin \left(\nu_{n} x\right)}{\nu_{n}^{2}}\right]_{0}^{1} \\
& =\frac{2\left(-\nu_{n} \cos \nu_{n}+\sin \nu_{n}\right)}{\nu_{n}^{2}\left(1+2 \cos ^{2}\left(\nu_{n}\right)\right)}=\frac{3 \sin \nu_{n}}{\nu_{n}^{2}\left(1+2 \cos ^{2} \nu_{n}\right)}
\end{aligned}
$$

Therefore, for $x \in(0,1)$

$$
x=\sum_{0}^{\infty} \frac{3 \sin \nu_{n}}{\nu_{n}^{2}\left(1+2 \cos ^{2} \nu_{n}\right)} \sin \left(\nu_{n} x\right) .
$$

Exercise 4. $y^{\prime \prime}+\lambda y=0, \quad 0<x<1, \quad y(0)=y^{\prime}(0)$ and $y(1)=y^{\prime}(1)$
Exercise 5. Consider the problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad 1<x<L, \quad y(1)=0, \quad y(L)=0,
$$

with $L>1$.
(1) Put the ODE in adjoint form: $\left(p y^{\prime}\right)^{\prime}+(q+\lambda r) y=0$ (Hint: multiply by $\left.1 / x\right)$.
(2) What is the inner product related to this problem?
(3) Find the eigenvalues and eigenfunctions (note: the ODE is Cauchy-Euler).
(4) Find the generalized Fourier series of the function $f(x)=1$ (Hint: when computing the Fourier coefficients c_{j}, you can use the substitution $t=\ln x$ in the integral).
(5) Same question for the function $g(x)=x$.
(1) Adjoint form of the DE: $\left(x y^{\prime}\right)^{\prime}+\frac{\lambda}{x} y=0$.
(2) The weight associated with the SL-problem is $r(x)=\frac{1}{x}$ and the inner product is defined by

$$
\langle f, g\rangle_{r}=\int_{1}^{L} f(x) g(x) \frac{1}{x} d x
$$

(3) Note that the DE is Cauchy-Euler with characteristic equation $m^{2}+\lambda=0$. Consider 3 cases.

- If $\lambda<0$, set $\lambda=-\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=A x^{\nu}+$ $B x^{-\nu}$. The condition $y(1)=0$ and $y(L)=0$ imply $A+B=0$ and $A L^{\nu}+B L^{-\nu}=0$ since $L>0, \nu>0$, then the only solution is $A=B=0$ and $\lambda<0$ cannot be an eigenvalue.
- If $\lambda=0$. The general solution of the DE is $y(x)=A+B \ln x$. The condition $y(1)=0$ and $y(L)=0$ imply $A=0$ and $B \ln L=0(B=0)$. Again $\lambda=0$ is not an eigenvalue.
- If $\lambda>0$, set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=$ $A \cos (\nu \ln x)+B \sin (\nu \ln x)$. The condition $y(1)=0$ gives $A=0$. Then $y(L)=$ 0 implies $B \sin (\nu \ln L)=0$. To obtain y nontrivial, we need $B \neq 0$ and then $\sin (\nu \ln L)=0$. Therefore $\nu \ln L=n \pi$ with $n \in \mathbb{Z}^{+}$.
The eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\nu_{n}^{2}=\left(\frac{n \pi}{\ln L}\right)^{2}, \quad y_{n}(x)=\sin \left(\nu_{n} \ln x\right)=\sin \left(n \pi \frac{\ln x}{\ln L}\right), \quad n \in \mathbb{Z}^{+}
$$

(4) The norms of the eigenfunctions are

$$
\left\|y_{n}\right\|^{2}=\left\langle y_{n}, y_{n}\right\rangle_{r}=\int_{1}^{L} \sin ^{2}\left(\nu_{n} \ln x\right) \frac{d x}{x}=\int_{1}^{L} \sin ^{2}\left(n \pi \frac{\ln x}{\ln L}\right) \frac{d x}{x} .
$$

To compute the integral, we use the substitution $t=\ln x$ so that $d t=\frac{d x}{x}$ and obtain

$$
\left\|y_{n}\right\|^{2}=\int_{0}^{\ln L} \sin ^{2}\left(\frac{n \pi}{\ln L} t\right) d t=\frac{\ln L}{2}
$$

- Expansion of $f(x)=1$ in y_{n} 's: We have $1=\sum_{n=1}^{\infty} c_{n} y_{n}(x)$ with

$$
\begin{aligned}
c_{n} & =\frac{\left\langle 1, y_{n}\right\rangle_{r}}{\left\|y_{n}\right\|^{2}}=\frac{2}{\ln L}\left\langle 1, y_{n}\right\rangle_{r}=\frac{2}{\ln L} \int_{1}^{L} \sin \left(\nu_{n} \ln x\right) \frac{d x}{x} \\
& =\frac{2}{\ln L} \int_{0}^{\ln L} \sin \left(\frac{n \pi}{\ln L} t\right) d t=\frac{2\left(1-(-1)^{n}\right)}{n \pi}
\end{aligned}
$$

Hence

$$
1=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin \left(n \pi \frac{\ln x}{\ln L}\right)
$$

- Expansion of $g(x)=x$ in y_{n} 's: We have $x=\sum_{n=1}^{\infty} c_{n} y_{n}(x)$ with

$$
\begin{aligned}
c_{n} & =\frac{\left\langle x, y_{n}\right\rangle_{r}}{\left\|y_{n}\right\|^{2}}=\frac{2}{\ln L}\left\langle x, y_{n}\right\rangle_{r}=\frac{2}{\ln L} \int_{1}^{L} x \sin \left(\nu_{n} \ln x\right) \frac{d x}{x} \\
& =\frac{2}{\ln L} \int_{0}^{\ln L} \mathrm{e}^{t} \sin \left(\frac{n \pi}{\ln L} t\right) d t
\end{aligned}
$$

Since $\int \mathrm{e}^{t} \sin (a t) d t=\frac{\mathrm{e}^{t}[\sin (a t)-a \cos (a t)]}{1+a^{2}}+C$, then

$$
c_{n}=\frac{n \pi\left[1-(-1)^{n} L\right]}{\ln ^{2} L+n^{2} \pi^{2}}
$$

and

$$
x=\sum_{n=1}^{\infty} \frac{n \pi\left[1-(-1)^{n} L\right]}{\ln ^{2} L+n^{2} \pi^{2}} \sin \left(n \pi \frac{\ln x}{\ln L}\right)
$$

Exercise 6. Same questions as in Exercise 5 for the SL-problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad 1<x<L, \quad y^{\prime}(1)=0, \quad y^{\prime}(L)=0,
$$

Exercise 7. Solve the BVP

$$
\begin{array}{ll}
u_{t}=2 u_{x x} & 0<x<\pi, \quad t>0, \\
u(0, t)=0 & t>0 \\
2 u(\pi, t)+u_{x}(\pi, t)=0 & t>0 \\
u(x, 0)=\sin x & 0<x<\pi
\end{array}
$$

We proceed by finding solutions with separated variables $u(x, t)=X(x) T(t)$ of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0, \quad 2 X(\pi)+X^{\prime}(\pi)=0
\end{array}, \quad T^{\prime}(t)+2 \lambda T(t)=0\right.
$$

It can be verified that $\lambda \leq 0$ cannot be an eigenvalue of the X-problem. For $\lambda>0$, set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the ODE is $X(x)=A \cos (\nu x)+B \sin (\nu x)$. The condition $X(0)=0$ implies $A=0$. Then the condition $2 X(\pi)+X^{\prime}(\pi)=0$ leads to $B(2 \sin (\nu \pi)+\nu \cos (\nu \pi))=0$. For $B \neq 0, \quad \nu$ needs to satisfy $2 \sin (\nu \pi)+\nu \cos (\nu \pi)=0$ or $\tan (\nu \pi)=-\frac{\nu}{2}$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^{+}$, the equation has a unique solution ν_{n} in the interval $\left(\frac{2 n-1}{2}, \frac{2 n+1}{2}\right)$ (see figure). The eigenvalues and eigenfunctions of the X-problem are:

$$
\lambda_{n}=\nu_{n}^{2}, \quad \text { with } \nu_{n} \in\left(\frac{2 n-1}{2}, \frac{2 n+1}{2}\right) \quad \tan \left(\nu_{n} \pi\right)=-\frac{\nu_{n}}{2}, \quad \text { and } \quad X_{n}(x)=\sin \left(\nu_{n} x\right) .
$$

The corresponding solutions of the T-problem are $T_{n}(t)=\mathrm{e}^{-2 \nu_{n}^{2} t}$. The solutions with separated

Figure 2. Positive solutions of $\tan (\nu \pi)=-\nu / 2$
variables of the homogeneous part of the BVP are $\mathrm{e}^{-2 \nu_{n}^{2} t} \sin \left(\nu_{n} x\right)$. The series representation of the general solution of the HP is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \mathrm{e}^{-2 \nu_{n}^{2} t} \sin \left(\nu_{n} x\right) .
$$

In order for u to satisfy the completed BVP, we need to have

$$
u(x, 0)=\sin x=\sum_{n=1}^{\infty} c_{n} \sin \left(\nu_{n} x\right) .
$$

The series is the generalized Fourier expansion of $\sin x$ in eigenfunctions of the X-problem. Thus

$$
c_{n}=\frac{\left\langle\sin x, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}} .
$$

We have

$$
\begin{aligned}
\left\|\sin \left(\nu_{n} x\right)\right\|^{2} & =\int_{0}^{\pi} \sin ^{2}\left(\nu_{n} x\right) d x=\frac{1}{2} \int_{0}^{\pi}\left(1-\cos \left(2 \nu_{n} x\right)\right) d x \\
& =\frac{1}{2}\left(\pi-\frac{\sin \left(2 \nu_{n} \pi\right)}{2 \nu_{n}}\right)=\frac{2 \pi+\cos ^{2}\left(\nu_{n} \pi\right)}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\sin x, \sin \left(\nu_{n} x\right)\right\rangle & =\int_{0}^{\pi} \sin x \sin \left(\nu_{n} x\right) d x=\frac{1}{2} \int_{0}^{\pi}\left[\cos \left(\nu_{n}-1\right) x-\cos \left(\nu_{n}+1\right) x\right] d x \\
& =\frac{-\sin \left(\nu_{n} \pi\right)}{2\left(\nu_{n}-1\right)}+\frac{\sin \left(\nu_{n} \pi\right)}{2\left(\nu_{n}+1\right)}=\frac{-\sin \left(\nu_{n} \pi\right)}{\nu_{n}^{2}-1} .
\end{aligned}
$$

Hence $c_{n}=\frac{-4 \sin \left(\nu_{n} \pi\right)}{\left(\nu_{n}^{2}-1\right)\left(2 \pi+\cos ^{2}\left(\nu_{n} \pi\right)\right)}$ and the solution of the BVP is

$$
u(x, t)=-4 \sum_{n=1}^{\infty} \frac{\sin \left(\nu_{n} \pi\right)}{\left(\nu_{n}^{2}-1\right)\left(2 \pi+\cos ^{2}\left(\nu_{n} \pi\right)\right)} \mathrm{e}^{-2 \nu_{n}^{2} t} \sin \left(\nu_{n} x\right)
$$

Exercise 8. Solve the BVP

$$
\begin{array}{ll}
u_{t}=u_{x x} & 0<x<\pi, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u(\pi, t)=u_{x}(\pi, t) & t>0 \\
u(x, 0)=1 & 0<x<\pi
\end{array}
$$

Exercise 9. Solve the BVP

$u_{t t}=c^{2} u_{x x}$	$0<x<\pi, \quad t>0$,
$u(0, t)=0$	$t>0$
$u(\pi, t)-u_{x}(\pi, t)=0$	$t>0$
$u(x, 0)=\sin x$	$0<x<\pi$
$u_{t}(x, 0)=0$	$0<x<\pi$

We proceed by finding solutions with separated variables $u(x, t)=X(x) T(t)$ of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0, \quad X(\pi)=X^{\prime}(\pi)
\end{array}, \quad\left\{\begin{array}{l}
T^{\prime \prime}(t)+c^{2} \lambda T(t)=0, \\
T^{\prime}(0)=0
\end{array} .\right.\right.
$$

To find the eigenvalues of the X-problem, we consider three cases.

- $\lambda<0$. Set $\lambda=-\mu^{2}$ with $\mu>0$. In this case the general solution of the ODE is $X(x)=A \cosh (\mu x)+B \sinh (\mu x)$. The condition $X(0)=0$ implies $A=0$, then the second condition leads to $B \sinh (\mu \pi)=B \mu \cosh (\mu \pi)$. For $B \neq 0$, the parameter μ must satisfy $\sinh (\mu \pi)=\mu \cosh (\mu \pi)$ or equivalently $\mathrm{e}^{2 \mu \pi}=\frac{1+\mu}{1-\mu}$. This equation has a unique positive solution μ_{0} with $\mu_{0} \in(0,1)$. In fact $\mu_{0} \approx 0.996$. Hence $\lambda_{0}=-\mu_{0}^{2}$ is an eigenvalue with corresponding eigenfunction $X_{0}(x)=\sinh \left(\mu_{0} x\right)$.
- It can be verified that $\lambda=0$ is not an eigenvalue.
- $\lambda>0$. Set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the ODE is $X(x)=$ $A \cos (\nu x)+B \sin (\nu x)$. The condition $X(0)=0$ implies $A=0$. Then the condition $X(\pi)=X^{\prime}(\pi)$ leads to $\left.B \sin (\nu \pi)=B \nu \cos (\nu \pi)\right)$. For $B \neq 0, \nu$ needs to satisfy $\sin (\nu \pi)=\nu \cos (\nu \pi)$ or $\tan (\nu \pi)=\nu$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^{+}$, the equation has a unique solution ν_{n} in the interval $\left(n, \frac{2 n+1}{2}\right)$. The eigenvalues and eigenfunctions of the X-problem are $\lambda_{n}=\nu_{n}^{2}$ and the corresponding eigenfunction $X_{n}(x)=\sin \left(\nu_{n} x\right)$.
For the negative eigenvalue $\lambda_{0}=-\mu_{0}^{2}$, the corresponding T-equation becomes $T^{\prime \prime}-c^{2} \mu_{0}^{2} T=0$ with general solution $T(t)=A \cosh \left(c \mu_{0} t\right)+B \sinh \left(c \mu_{0} t\right)$. The condition $T^{\prime}(0)=0$ implies $B=0$. The solution of HP of the BVP with separated variables is

$$
u_{0}(x, t)=\cosh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)
$$

For the positive eigenvalues $\lambda_{n}=\nu_{n}^{2}$, the corresponding T-equation becomes $T^{\prime \prime}+c^{2} \nu_{n}^{2} T=0$ with general solution $T(t)=A \cos \left(c \nu_{n} t\right)+B \sin \left(c \nu_{n} t\right)$. The condition $T^{\prime}(0)=0$ implies $B=0$. The solution of HP of the BVP with separated variables is

$$
u_{n}(x, t)=\cos \left(c \nu_{n} t\right) \sin \left(\nu_{n} x\right) .
$$

The series representation of the general solution of HP is therefore

$$
u(x, t)=c_{0} \cosh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)+\sum_{n=1}^{\infty} c_{n} \cos \left(c \nu_{n} t\right) \sin \left(\nu_{n} x\right) .
$$

Now we use the nonhomogeneous condition to find the constants c_{n} 's so that u solves the complete BVP.

$$
u(x, 0)=\sin x=c_{0} \sinh \left(\mu_{0} x\right)+\sum_{n=1}^{\infty} c_{n} \sin \left(\nu_{n} x\right) .
$$

Therefore

$$
c_{0}=\frac{\left\langle\sin x, \sinh \left(\mu_{0} x\right)\right\rangle}{\left\|\sinh \left(\mu_{0} x\right)\right\|^{2}} \quad \text { and } \quad c_{n}=\frac{\left\langle\sin x, \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}} .
$$

We have

$$
\begin{aligned}
&\left\|\sinh \left(\mu_{0} x\right)\right\|^{2}=\int_{0}^{\pi} \sinh \left(\mu_{0} x\right)^{2} d x=\frac{1}{2} \int_{0}^{\pi}\left[\cosh \left(2 \mu_{0} x\right)-1\right] d x \\
&= \frac{\sinh \left(2 \mu_{0} \pi\right)}{4 \mu_{0}}-\frac{\pi}{2}=\frac{\cosh ^{2}\left(\mu_{0} \pi\right)-\pi}{2} ; \\
&\left\|\sin \left(\nu_{n} x\right)\right\|^{2}=\int_{0}^{\pi} \sin \left(\nu_{n} x\right)^{2} d x=\frac{1}{2} \int_{0}^{\pi}\left[1-\cos \left(2 \nu_{n} x\right)\right] d x \\
&=\frac{\pi}{2}-\frac{\sin \left(2 \nu_{n} \pi\right)}{4 \nu_{n}}=\frac{\pi-\cos ^{2}\left(\nu_{n} \pi\right)}{2} ; \\
&=\frac{\mu_{0}^{2}}{1+\mu_{0}^{2}}\left[\frac{\sin x \cosh \left(\mu_{0} x\right)}{\mu_{0}}-\frac{\cos x \sinh \left(\mu_{0} x\right)}{\mu_{0}^{2}}\right]_{0}^{\pi} \\
&\left\langle\sin x, \sinh \left(\mu_{0} x\right)\right\rangle=\frac{\sinh \left(\mu_{0} \pi\right)}{1+\mu_{0}^{2}} ; \\
& \sin x \sinh \left(\mu_{0} x\right) d x \\
&\left\langle\sin x, \sin \left(\nu_{n} x\right)\right\rangle=\int_{0}^{\pi} \sin x \sin \left(\nu_{n} x\right) d x \\
&=\frac{1}{1-\nu_{n}^{2}}\left[-\cos x \sin \left(\nu_{n} x\right)+\nu_{n} \sin x \cos \left(\nu_{n} x\right)\right]_{0}^{\pi} \\
&=\frac{\sin \left(\nu_{n} \pi\right)}{1-\nu_{n}^{2}} .
\end{aligned}
$$

Hence

$$
c_{0}=\frac{2 \sinh \left(\mu_{0} \pi\right)}{\left(1+\mu_{0}^{2}\right)\left(\cosh ^{2}\left(\mu_{0} \pi\right)-\pi\right)} \quad \text { and } \quad c_{n}=\frac{2 \sin \left(\nu_{n} \pi\right)}{\left(1-\nu_{n}^{2}\right)\left(\pi-\cos ^{2}\left(\nu_{n} \pi\right)\right)} .
$$

The solution of the BVP is:

$$
u(x, t)=\frac{2 \sinh \left(\mu_{0} \pi\right) \cosh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)}{\left(1+\mu_{0}^{2}\right)\left(\cosh ^{2}\left(\mu_{0} \pi\right)-\pi\right)}+\sum_{n=1}^{\infty} \frac{2 \sin \left(\nu_{n} \pi\right) \cos \left(c \nu_{n} t\right) \sin \left(\nu_{n} x\right)}{\left(1-\nu_{n}^{2}\right)\left(\pi-\cos ^{2}\left(\nu_{n} \pi\right)\right)}
$$

Exercise 10. Solve the BVP

$$
\begin{array}{ll}
u_{t t}=c^{2} u_{x x} & 0<x<\pi, \quad t>0, \\
u(0, t)=0 & t>0 \\
u(\pi, t)-u_{x}(\pi, t)=0 & t>0 \\
u(x, 0)=0 & 0<x<\pi \\
u_{t}(x, 0)=f(x) & 0<x<\pi
\end{array}
$$

where

$$
f(x)= \begin{cases}0 & \text { if } 0<x<(\pi / 2) \\ 1 & \text { if }(\pi / 2)<x<\pi\end{cases}
$$

Exercise 11. Solve the BVP (here a is a positive constant)

$$
\begin{array}{ll}
u_{t t}=u_{x x} & 0<x<\pi, \quad t>0, \\
u_{x}(0, t)=a u(0, t) & t>0 \\
u_{x}(\pi, t)=0 & t>0 \\
u(x, 0)=0 & 0<x<\pi \\
u_{t}(x, 0)=1 & 0<x<\pi
\end{array}
$$

We proceed by finding solutions with separated variables $u(x, t)=X(x) T(t)$ of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X^{\prime}(0)=a X(0), \quad X^{\prime}(\pi)=0
\end{array}, \quad\left\{\begin{array}{l}
T^{\prime \prime}(t)+\lambda T(t)=0, \\
T(0)=0
\end{array} .\right.\right.
$$

To find the eigenvalues of the X-problem, we consider three cases.

- $\lambda<0$. Set $\lambda=-\mu^{2}$ with $\mu>0$. In this case the general solution of the ODE is $X(x)=A \cosh (\mu x)+B \sinh (\mu x)$. We have $X^{\prime}(x)=\mu A \sinh (\mu x)+\mu B \cosh (\mu x)$. The condition $X^{\prime}(0)=a X(0)$ implies $B \mu=A a$, then the second condition $X^{\prime}(\pi)=0$ leads to $A(\mu \sinh (\mu \pi)+a \cosh (\mu \pi))=0$. Since $\mu>0, a>0$, then $\mu \sinh (\mu \pi)+a \cosh (\mu \pi)>0$ and $A=0$. This implies $X=0$ and $\lambda<0$ cannot be an eigenvalue.
- It can be verified that $\lambda=0$ is not an eigenvalue.
- $\lambda>0$. Set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the ODE is $X(x)=A \cos (\nu x)+$ $B \sin (\nu x)$. We have $X^{\prime}(x)=-\nu A \sin (\nu x)+\nu B \cos (\nu x)$ The condition $X(0)=0$ implies $A=0$. Then the condition $X^{\prime}(0)=a X(0)$ implies $a A=\nu B$. Then the condition $X^{\prime}(\pi)=0$ leads to $A(a \cos (\nu \pi)-\nu \sin (\nu \pi))=0$. For $A \neq 0, \nu$ needs to satisfy $\nu \sin (\nu \pi)=a \cos (\nu \pi)$ or $\tan (\nu \pi)=\frac{a}{\nu}$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^{+}$, the equation has a unique solution ν_{n} in the interval $\left(n-1, \frac{2 n-1}{2}\right)$.
The eigenvalues and eigenfunctions of the X-problem are $\lambda_{n}=\nu_{n}^{2}$ and the corresponding eigenfunction $X_{n}(x)=\nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)$.
For the eigenvalue $\lambda_{n}=\nu_{n}^{2}$, the corresponding T-equation becomes $T^{\prime \prime}+\nu_{n}^{2} T=0$ with general solution $T(t)=A \cos \left(c \nu_{n} t\right)+B \sin \left(c \nu_{n} t\right)$. The condition $T(0)=0$ implies $A=0$. The solution of HP of the BVP with separated variables is

$$
u_{n}(x, t)=\sin \left(\nu_{n} t\right)\left[\nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)\right] .
$$

The series representation of the general solution of HP is therefore

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\nu_{n} t\right)\left[\nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)\right] .
$$

Now we use the nonhomogeneous condition to find the constants c_{n} 's so that u solves the complete BVP. We have

$$
u_{t}(x, 0)=1=\sum_{n=1}^{\infty} \nu_{n} c_{n}\left[\nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)\right]
$$

Therefore

$$
\nu_{n} c_{n}=\frac{\left\langle 1, \nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\nu_{n} \cos \left(\nu_{n} x\right)+a \sin \left(\nu_{n} x\right)\right\|^{2}} .
$$

Exercise 12. Solve the BVP

$$
\begin{array}{ll}
u_{t}=(1+x)^{2} u_{x x} & 0<x<1, \quad t>0, \\
u(0, t)=0 \quad u(1, t)=0 & t>0 \\
u(x, 0)=x(1-x) \sqrt{1+x} & 0<x<1
\end{array}
$$

