Spring 2022 - MAP4401

Test 2 Solutions
Problem 1. Let f be the 2π-periodic function defined over $[-\pi, \pi]$ by

$$
f(x)= \begin{cases}\sin x & \text { if } 0<x<\pi \\ 0 & \text { if }-\pi<x<0\end{cases}
$$

Find the following Fourier coefficients of $f: a_{0}, a_{1}, a_{2}$, and b_{1}
Using the formulas

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos (n x) d x \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin x \sin (n x) d x
\end{aligned}
$$

we find

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{\pi} \sin x d x=\frac{2}{\pi}, \quad a_{1}=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos x d x=\frac{1}{2 \pi}\left[\sin ^{2} x\right]_{0}^{\pi}=0 \\
& a_{2}=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos (2 x) d x=\frac{1}{2 \pi} \int_{0}^{\pi}(\sin (3 x)-\sin x) d x=\frac{1}{2 \pi}\left[\frac{-\cos (3 x)}{3}+\cos x\right]_{0}^{\pi}=\frac{-2}{3 \pi} \\
& b_{1}=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2 \pi} \int_{0}^{\pi}(1-\cos (2 x)) d x=\frac{1}{2 \pi}\left[x-\frac{\sin (2 x)}{s}\right]_{0}^{\pi}=\frac{1}{2}
\end{aligned}
$$

Problem 2. Consider the periodic function $f(x)$ with period 2 , given on the interval $[-1,1]$ by $f(x)=x^{2}$. The function f is an even continuous function on \mathbb{R} and with Fourier series:

$$
f(x)=\frac{1}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x)
$$

(a) Use integration of Fourier series to find the Fourier series of the function $g(x)$ with period 2 and defined on the interval $[-1,1]$ by $g(x)=x^{3}-x$.
For $x \in[-1,1]$ we have $\int_{0}^{x} f(t) d t=\int_{0}^{x} t^{2} d t=\frac{x^{3}}{3}$. If we replace $f(t)$ by its Fourier series we have then

$$
\frac{x^{3}}{3}=\int_{0}^{x}\left[\frac{1}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi t)\right] d t=\frac{x}{3}-\frac{4}{\pi^{3}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}} \sin (n \pi x)
$$

It follows that

$$
x^{3}-x=\frac{12}{\pi^{3}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin (n \pi x)
$$

(b) Use the Fourier series representation of f at an appropriate values of x to evaluate the numerical series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{25}+\cdots
$$

Since f is continuous at 0 , then $f(0)=0$ is equal to the value of its Fourier series at 0. Thus

$$
0=\frac{1}{3}-\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

It follows that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$
(c) Use the Fourier series representation of g at an appropriate values of x to evaluate the numerical series

$$
\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)^{3}}=1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{5^{3}}-\cdots
$$

Since g is continuous at $x=1 / 2$, then $g(1 / 2)=(1 / 8)-(1 / 2)$ is equal to the value of its Fourier series at $1 / 2$. Thus

$$
\frac{1}{8}-\frac{1}{2}=\frac{12}{\pi^{3}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin \frac{n \pi}{2}=\frac{12}{\pi^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}
$$

It follows that $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}=\frac{\pi^{3}}{32}$
Problem 3. Given a piecewise smooth function $f(x)$ with period $2 L$ and with Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)
$$

1. Write Parseval's identity for the function f.

$$
\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{2 L} \int_{-L}^{L} f(x)^{2} d x
$$

2. The 2π-periodic function $f(x)$ that is defined on the interval $[-\pi, \pi]$ by $f(x)=$ $\pi^{2} x-x^{3}$ has Fourier series

$$
12 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}} \sin (n x)
$$

Use Parseval's identity to evaluate the series $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$

$$
\frac{12^{2}}{2} \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pi^{2} x-x^{3}\right)^{2} d x=\frac{1}{2 \pi}\left[\frac{\pi^{4} x^{3}}{3}-\frac{2 \pi^{2} x^{5}}{5}+\frac{x^{7}}{7}\right]_{-\pi}^{\pi}=\frac{8 \pi^{6}}{3 \cdot 5 \cdot 7}
$$

It follows that $\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$

Problem 4. (49 pts) Solve the following boundary value problem

$$
\begin{cases}u_{t t}+2 u_{t}=16 u_{x x}, & 0<x<2, \quad t>0 \\ u(0, t)=u(2, t)=0, & t>0 \\ u(x, 0)=0, & 0<x<2 \\ u_{t}(x, 0)=g(x), & 0<x<2\end{cases}
$$

with $g(x)= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { for } 1<x<2\end{cases}$
The homogeneous and nonhomogeneous parts of the BVP are:

$$
(\mathrm{HP}):\left\{\begin{array}{l}
u_{t t}+2 u_{t}=16 u_{x x} \\
u(0, t)=u(2, t)=0 \\
u(x, 0)=0
\end{array} \quad(\mathrm{NHP}): \quad u_{t}(x, 0)=g(x)\right.
$$

If $u(x, t)=X(x) T(t)$ solves (HP), then the functions X and T solve the ODE problems

$$
\left\{\begin{array} { l }
{ X ^ { \prime \prime } (x) + \lambda X (x) = 0 } \\
{ X (0) = 0 , X (2) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
T^{\prime \prime}(t)+2 T^{\prime}(t)+16 \lambda T(t)=0 \\
T(0)=0
\end{array}\right.\right.
$$

where λ is the separation constant. The eigenvalues and eigenfunctions of the X-problem are

$$
\lambda_{n}=\nu_{n}^{2} \quad \text { and } \quad X_{n}(x)=\sin \left(\nu_{n} x\right), \quad \text { with } \quad \nu_{n}=\frac{n \pi}{2}, \quad n \in \mathbb{Z}^{+}
$$

For $\lambda=\nu_{n}^{2}$, the characteristic equation of the T-problem is $m^{2}+2 m+16 \nu_{n}^{2}=0$ with complex conjugate roots

$$
m_{1,2}=-1 \pm i \omega_{n} \quad \text { with } \quad \omega_{n}==\sqrt{16 \nu_{n}^{2}-1}
$$

The general solution of the T-equation is $T(t)=\mathrm{e}^{-t}\left(A \cos \left(\omega_{n} t\right)+B \sin \left(\omega_{n} t\right)\right)$. Since in addition $T(0)=0$, then $A=0$.

The solutions with separated variables of (HP) are: $\mathrm{e}^{-t} \sin \left(\omega_{n} t\right) \sin \left(\nu_{n} x\right)$. The principle of suerposition gives the general solution as

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{-t} \sin \left(\omega_{n} t\right) \sin \left(\nu_{n} x\right)
$$

We have

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} C_{n}\left[-\mathrm{e}^{-t} \sin \left(\omega_{n} t\right)+\omega_{n} \mathrm{e}^{-t} \cos \left(\omega_{n} t\right)\right] \sin \left(\nu_{n} x\right)
$$

Hence

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} C_{n} \omega_{n} \sin \left(\nu_{n} x\right)=g(x)
$$

Therefore

$$
C_{n} \omega_{n}=\frac{2}{2} \int_{0}^{2} g(x) \sin \frac{n \pi x}{2} d x=\int_{0}^{1} \sin \frac{n \pi x}{2}=\frac{2(1-\cos (n \pi / 2))}{n \pi}
$$

Thus $C_{n}=\frac{2(1-\cos (n \pi / 2))}{\pi n \omega_{n}}$ and the solution of the BVP is

$$
u(x, t)=\frac{\mathrm{e}^{-t}}{\pi} \sum_{n=1}^{\infty} \frac{2(1-\cos (n \pi / 2))}{n \omega_{n}} \sin \left(\omega_{n} t\right) \sin \left(\nu_{n} x\right)
$$

