
TEST 3 - SOLUTIONS

Exercises from LN 9
Exercise 2. y′′+λy = 0, −1 < x < 1, y(−1) = y(1) and y′(−1) = y′(1) (periodic SL problem)

Eigenvalues and eigenfunctions:

• λ = 0 is an eigenvalue with eigenfunction y0(x) = 1.
• λ = (kπ)2 with eigenfunctions cos(kπx) and sin(kπx) with k ∈ Z+.

The expansion of a function f on the interval [−1, 1] is just the regular Fourier series. Since
f(x) = 1 is already an eigenfunction, then it is equal to its Fourier series (i.e. a0/2 = 1 and
an = bn = 0 for n ≥ 1).

The function g(x) = x is odd, then an = 0 for all n and

bn = 2

∫ 1

0

x sin(nπx)dx = 2
(−1)n+1

n

Hence

x = 2
∞∑
n=1

(−1)n+1

n
sin(nπx) .

Exercise 4. y′′ + λy = 0, 0 < x < 1, y(0) = y′(0) and y(1) = y′(1)

Eigenvalues and eigenfunctions: Consider three cases

• Case λ < 0: Set λ = −ν2 with ν > 0. The general solution of the DE is y(x) =
C1e

νx + C2e
−νx and y′(x) = ν(C1e

νx − C2e
−νx). The condition y(0) = y′(0) leads to

C2(ν + 1) = C1(ν − 1) and the condition y(1) = y′(1) to the condition C2(ν + 1)e−ν =
C1(ν − 1)eν . It follows that C2(ν + 1)e−ν = C2(ν + 1)eν and then C2 = 0. This system
reduces to C1(ν − 1) =. If C1 ̸= 0, then ν = 1 and we have nontrivial solution. Thus
λ0 = −1 is an eigenvalue with eigenfunction y0(x) = ex.

• Case λ = 0: The general solution of the DE is y(x) = Ax+B. The condition y(0) = y′(0)
gives A = B. Then the condition y(1) = y′(1) gives 2A = A and so A = B = 0 and
λ = 0 is not an eigenvalue.

• Case λ > 0: Set λ = ν2 with ν > 0. The general solution of the DE is y(x) =
C1 cos(νx) + C2 sin(νx) and y′(x) = ν(−C1 sin(νx) + C2 cos(νx)). The condition y(0) =
y′(0) leads to C1 = νC2 and the condition y(1) = y′(1) leads to C1 cos ν + C2 sin ν =
−νC1 sin ν + νC2 cos ν. After eliminating C1 in the system we get C2(1 + ν2) sin ν = 0.
If C2 = 0, then C1 = 0 and the solution is trivial. In order to get a nontrivial solution,
we need C2 ̸= 0, then sin ν = 0 and ν = kπ with k ∈ Z+. The eigenvalues are then
λk = ν2

k = (kπ)2 with corresponding eigenfunction yk(x) = νk cos(νkx) + sin(νkx).

Norms of eigenfunctions:

• For eigenvalue λ0 = −1, eigenfunction y0(x) = ex

∥y0∥2 =
∫ 1

0

e2xdx =
e2 − 1

2

• For eigenvalue λk = ν2
k = (kπ)2, eigenfunction yk(x) = νk cos(νkx) + sin(νkx)

∥yk∥2 =
∫ 1

0

[νk cos(νkx) + sin(νkx)]
2dx =

1 + ν2
k

2
.

1
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Expansion of f(x) = 1: We have 1 = c0y0(x) +
∞∑
k=1

ckyk(x) with cj =
< 1, yj >

∥yj∥2
. We have

< 1, y0 >=

∫ 1

0

exdx = e− 1 and c0 = 2
e− 1

e2 − 1
=

2

e + 1

For k ≥ 1, we have

< 1, yk >=

∫ 1

0

[νk cos(νkx) + sin(νkx)]dx =
1− (−1)k

νk
and ck = 2

1− (−1)k

νk(1 + ν2
k)

Therefore

1 =
2ex

e + 1
+ 2

∞∑
k=1

1− (−1)k

νk(1 + ν2
k)
[νk cos(νkx) + sin(νkx)]

Expansion of g(x) = x: We have x = c0y0(x) +
∞∑
k=1

ckyk(x) with cj =
< x, yj >

∥yj∥2
. We have

< x, y0 >=

∫ 1

0

xexdx = [xex − ex]10 = 1 and c0 =
2

e2 − 1

For k ≥ 1, we have

< x, yk >=

∫ 1

0

x[νk cos(νkx) + sin(νkx)]dx =
2(−1)k − 1

νk
and ck = 2

2(−1)k − 1

νk(1 + ν2
k)

Therefore

x =
2ex

e2 − 1
+ 2

∞∑
k=1

2(−1)k − 1

νk(1 + ν2
k)

[νk cos(νkx) + sin(νkx)]

Exercise 6. Same questions as in Exercise 5 for the SL-problem

x2y′′ + xy′ + λy = 0, 1 < x < L, y′(1) = 0, y′(L) = 0,

(1) Adjoint form of the DE: (xy′)′ +
λ

x
y = 0.

(2) The weight associated with the SL-problem is r(x) =
1

x
and the inner product is defined

by

⟨f, g⟩r =
∫ L

1

f(x)g(x)
1

x
dx.

(3) Note that the DE is Cauchy-Euler with characteristic equation m2 + λ = 0. Consider 3
cases.

• If λ < 0, set λ = −ν2 with ν > 0. The general solution of the DE is y(x) =
Axν +Bx−ν and we have y′(x) = νAxν−1 − νBx−ν−1. The condition y′(1) = 0 and
y′(L) = 0 imply A − B = 0 and ν(ALν−1 − BL−ν−1) = 0 since L > 1, ν > 0, then
the only solution is A = B = 0 and λ < 0 cannot be an eigenvalue.

• If λ = 0. The general solution of the DE is y(x) = A+B ln x and y′(x) = B/x. The
condition y′(1) = 0 and y′(L) = 0 imply B = 0 and A arbitrary. Therefore λ = 0 is
an eigenvalue with eigenfunction y0(x) = 1.

• If λ > 0, set λ = ν2 with ν > 0. The general solution of the DE is y(x) =
A cos(ν ln x) + B sin(ν ln x) and

y′(x) =
ν

x
[−A sin(ν ln x) + B cos(ν ln x)] .
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The condition y′(1) = 0 gives B = 0. Then y′(L) = 0 implies
νA

L
sin(ν lnL) = 0. To

obtain y nontrivial, we need A ̸= 0 and then sin(ν lnL) = 0. Therefore ν lnL = nπ
with n ∈ Z+. In this case the eigenvalues and eigenfunctions are:

λn = ν2
n =

( nπ

lnL

)2

, yn(x) = cos(νn ln x) = cos

(
nπ

ln x

lnL

)
, n ∈ Z+

(4) The norms of the eigenfunctions are

∥y0∥2 = ⟨y0, y0⟩r
∫ L

1

dx

x
= lnL

For n ≥ 1

∥yn∥2 = ⟨yn, yn⟩r =
∫ L

1

cos2(νn ln x)
dx

x
=

∫ L

1

cos2
(
nπ

ln x

lnL

)
dx

x
.

To compute the integral, we use the substitution t = ln x so that dt =
dx

x
and obtain

∥yn∥2 =
∫ lnL

0

cos2
( nπ

lnL
t
)
dt =

lnL

2

• Expansion of f(x) = 1 in yn’s: Since y0(x) = 1 is already an element of the

orthogonal basis then we have 1 = c0 +
∞∑
n=1

cnyn(x) with c0 = 1 and cn = 0 for

n ≥ 1.

• Expansion of g(x) = x in yn’s: We have x = c0 +
∞∑
n=1

cnyn(x) with

c0 =
⟨x, y0⟩r
∥y0∥2

=
1

lnL
⟨x, y0⟩r =

2

lnL

∫ L

1

dx =
L− 1

lnL

and for n ≥ 1

cn =
⟨x, yn⟩r
∥yn∥2

=
2

lnL
⟨x, yn⟩r =

2

lnL

∫ L

1

x cos(νn ln x)
dx

x

=
2

lnL

∫ lnL

0

et cos
( nπ

lnL
t
)
dt

Since

∫
et cos(at)dt =

et [cos(at) + a sin(at)]

1 + a2
+ C, then

cn =
2L

lnL

(−1)n − 1

1 + ν2
n

We have

x =
L− 1

lnL
+

2L

lnL

∞∑
n=1

(−1)n − 1

1 + ν2
n

cos(νn ln x) .

Exercise 8. Solve the BVP

ut = uxx 0 < x < π, t > 0,
ux(0, t) = 0 t > 0
u(π, t) = ux(π, t) t > 0
u(x, 0) = 1 0 < x < π
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We proceed by finding solutions with separated variables u(x, t) = X(x)T (t) of the homogeneous
part. This leads to the following ODE problems for X and T , where λ is the separation constant: X ′′(x) + λX(x) = 0

X ′(0) = 0, X(π) = X ′(π)
, T ′(t) + λT (t) = 0 .

To find the eigenvalues and eigenfunctions of the X-problem, we consider 3 cases

• Case λ = −ν2 with ν > 0. In this case the general solution of the ODE is X(x) =
Aeνx+Be−νx and X ′(x) = νAeνx−νBe−νx. The condition X ′(0) = 0 leads to A−B = 0
(or A = B) and then the condition X(π) = X ′(π) leads to A(eνπ+e−νπ) = Aν(eνπ−e−νπ)

if A ̸= 0, then ν must satisfy (eνπ + e−νπ) = ν(eνπ − e−νπ) or equivalently e2πν =
ν + 1

ν − 1
.

This equation has a unique positive solution ν0 ∈ (1, 2) (see figure) Hence λ0 = −ν2
0 is

Figure 1. Positive solutions of e2πν = ν+1
ν−1

an eigenvalue with corresponding eigenfunction X0(x) = cosh(ν0x).
• Case λ = 0. It is easily verified that 0 is not an eigenvalue.
• Case λ = ν2 with ν > 0. The general solution of the ODE is X(x) = A cos(νx) +
B sin(νx). The condition X ′(0) = 0 implies B = 0. Then the condition X(π) = X ′(π) =

0 leads to A cos(νπ) = −Aν sin(νπ)) = 0. For A ̸= 0, ν needs to satisfy tan(νπ) =
−1

ν
.

This equation has infinitely many solutions, for every n ∈ Z+, the equation has a unique

solution νn in the interval

(
n− 1

2
, n

)
(see figure). The eigenvalues and eigenfunctions

of the X-problem are:

λn = ν2
n, with νn ∈

(
n− 1

2
, n

)
tan(νnπ) = − 1

νn
, and Xn(x) = cos(νnx).

The corresponding solutions of the T -problem are:

For λ0 = −ν2
0 , T0(t) = eν

2
0 t;

For λn = ν2
n, Tn(t) = e−ν2nt, n ∈ Z+ .

The solutions with separated variables of the homogeneous part of the BVP are

eν
2
0 t cosh(ν0x), e−ν2nt cos(νnx), n ∈ Z+ .

The series representation of the general solution of the HP is

u(x, t) = c0e
ν20 t cosh(ν0x) +

∞∑
n=1

cne
−ν2nt cos(νnx) .
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Figure 2. Positive solutions of tan(νπ) = − 1
ν

In order for u to satisfy the completed BVP, we need to have

u(x, 0) = 1 = c0 cosh(ν0x) +
∞∑
n=1

cn cos(νnx) .

The series is the generalized Fourier expansion of sin x in eigenfunctions of the X-problem. Thus

c0 =
⟨1, cosh(ν0x)⟩
∥cosh(ν0x)∥2

and cn =
⟨1, cos(νnx)⟩
∥cos(νnx)∥2

for n ≥ 1.

We have

∥cosh(ν0x)∥2 =

∫ π

0

cosh(ν0x) dx =
1

2

∫ π

0

(1 + cosh(2ν0x)) dx

=
1

2

(
π +

sinh(2ν0π)

2ν0

)
=

2πν0 + sinh2(ν0π)

4ν0
;

∥cos(νnx)∥2 =

∫ π

0

cos2(νnx) dx =
1

2

∫ π

0

(1 + cos(2νnx)) dx

=
1

2

(
π +

sin(2νnπ)

2νn

)
=

π − sin2(νnπ)

2
.

and

⟨1, cosh(ν0x)⟩ =

∫ π

0

cosh(ν0x) dx =
sinh(ν0π)

ν0

⟨1, cos(νnx)⟩ =

∫ π

0

cos(νnx) dx =
sinh(νnπ)

νn
.

Hence

c0 =
4 sinh(ν0π)

2πν0 + sinh(2ν0π)
and cn =

2 sin(νnx)

νn(π − sin2(νnπ))

and the solution of the BVP is

u(x, t) =
4 sinh(ν0π)

2πν0 + sinh(2ν0π)
eν

2
0 t cosh(ν0x) +

∞∑
n=1

2 sin(νnx)

νn(π − sin2(νnπ))
e−ν2nt cos(νnx) .
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Exercise 10. Solve the BVP

utt = c2uxx 0 < x < π, t > 0,
u(0, t) = 0 t > 0
u(π, t)− ux(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π
ut(x, 0) = f(x) 0 < x < π

where

f(x) =

{
0 if 0 < x < (π/2),
1 if (π/2) < x < π.

We proceed by finding solutions with separated variables u(x, t) = X(x)T (t) of the homogeneous
part. This leads to the following ODE problems for X and T , where λ is the separation constant: X ′′(x) + λX(x) = 0

X(0) = 0, X(π) = X ′(π)
,

 T ′′(t) + c2λT (t) = 0 ,

T (0) = 0
.

To find the eigenvalues of the X-problem, we consider three cases.

• λ < 0. Set λ = −µ2 with µ > 0. In this case the general solution of the ODE is
X(x) = A cosh(µx) + B sinh(µx). The condition X(0) = 0 implies A = 0, then the
second condition leads to B sinh(µπ) = Bµ cosh(µπ). For B ̸= 0, the parameter µ must

satisfy sinh(µπ) = µ cosh(µπ) or equivalently e2µπ =
1 + µ

1− µ
. This equation has a unique

positive solution µ0 with µ0 ∈ (0, 1). In fact µ0 ≈ 0.996. Hence λ0 = −µ2
0 is an

eigenvalue with corresponding eigenfunction X0(x) = sinh(µ0x).
• It can be verified that λ = 0 is not an eigenvalue.
• λ > 0. Set λ = ν2 with ν > 0. The general solution of the ODE is X(x) =
A cos(νx) + B sin(νx). The condition X(0) = 0 implies A = 0. Then the condition
X(π) = X ′(π) leads to B sin(νπ) = Bν cos(νπ). For B ̸= 0, ν needs to satisfy
sin(νπ) = ν cos(νπ) or tan(νπ) = ν. This equation has infinitely many solutions, for

every n ∈ Z+, the equation has a unique solution νn in the interval

(
n,

2n+ 1

2

)
. The

eigenvalues and eigenfunctions of the X-problem are λn = ν2
n and the corresponding

eigenfunction Xn(x) = sin(νnx).

For the negative eigenvalue λ0 = −µ2
0, the corresponding T -equation becomes T ′′ − c2µ2

0T = 0
with general solution T (t) = A cosh(cµ0t)+B sinh(cµ0t). The condition T (0) = 0 implies A = 0.
The solution of HP of the BVP with separated variables is

u0(x, t) = sinh(cµ0t) sinh(µ0x).

For the positive eigenvalues λn = ν2
n, the corresponding T -equation becomes T ′′ + c2ν2

nT = 0
with general solution T (t) = A cos(cνnt) + B sin(cνnt). The condition T (0) = 0 implies A = 0.
The solution of HP of the BVP with separated variables is

un(x, t) = sin(cνnt) sin(νnx).

The series representation of the general solution of HP is therefore

u(x, t) = c0 sinh(cµ0t) sinh(µ0x) +
∞∑
n=1

cn sin(cνnt) sin(νnx).
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Now we use the nonhomogeneous condition to find the constants cn’s so that u solves the
complete BVP.

ut(x, 0) = f(x) = (cµ0)c0 sinh(µ0x) +
∞∑
n=1

(cµn)cn sin(νnx).

Therefore

(cµ0)c0 =
⟨f(x), sinh(µ0x)⟩
∥sinh(µ0x)∥2

and (cµn)cn =
⟨f(x), sin(νnx)⟩
∥sin(νnx)∥2

.

We have

∥sinh(µ0x)∥2 =

∫ π

0

sinh(µ0x)
2dx =

1

2

∫ π

0

[cosh(2µ0x)− 1] dx

=
sinh(2µ0π)

4µ0

− π

2
=

cosh2(µ0π)− π

2
;

∥sin(νnx)∥2 =

∫ π

0

sin(νnx)
2dx =

1

2

∫ π

0

[1− cos(2νnx)] dx

=
π

2
− sin(2νnπ)

4νn
=

π − cos2(νnπ)

2
;

⟨f(x), sinh(µ0x)⟩ =

∫ π

π/2

sinh(µ0x)dx =
cosh(µ0π)− cosh(µ0π/2)

µ0

⟨f(x), sin(µnx)⟩ =

∫ π

π/2

sin(µnx)dx =
cos(µnπ/2)− cos(µnπ)

µn

Hence

c0 =
cosh2(µ0π)− π

2c(cosh(µ0π)− cosh(µ0π/2))
and cn =

2(cos(µnπ/2)− cos(µnπ))

cµ2
n(π − cos2(µnπ))

.

The solution of the BVP is:

u(x, t) =
(cosh2(µ0π)− π) sinh(cµ0t) sinh(µ0x)

2c(cosh(µ0π)− cosh(µ0π/2))
+

∞∑
n=1

2(cos(µnπ/2)− cos(µnπ)) sin(cµnt) sin(µnx)

cµ2
n(π − cos2(µnπ))

.
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Exercise 2.
ut = uxx + e−x 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = 0 0 < x < π

We use the eigenfunctions expansion of the SL-problem X ′′+λX = 0, X(0) = X(π) = 0. That
is, seek u(x, t) as

u(x, t) =
∞∑
n=1

cn(t) sin(nx) .

where cn(t) are functions of t that need to be determined. Since Fourier sine series of e−x over
[0, π] is

e−x =
2

π

∞∑
n=1

n(1 + (−1)ne−π)

1 + n2
sin(nx)

the PDE ut = uxx + e−x can be rewritten as
∞∑
n=1

c′n(t) sin(nx) = −
∞∑
n=1

n2cn(t) sin(nx) +
2

π

∞∑
n=1

n(1 + (−1)ne−π)

1 + n2
sin(nx) .

The initial condition u(x, 0) = 0 implies that cn(0) = 0 for all n ≥ 1. It follows that for n ≥ 1,
the function cn(t) satisfies the first order linear ODE problem

c′n(t) + n2cn(t) =
2n(1 + (−1)ne−π)

π(1 + n2)
, cn(0) = 0.

We use the method of undetermined coefficients to find

cn(t) =
2(1 + (−1)ne−π)

nπ(1 + n2)

(
1− e−n2t

)
.

Therefore the solution of the BVP is

u(x, t) =
∞∑
n=1

2(1 + (−1)ne−π)

nπ(1 + n2)

(
1− e−n2t

)
sin(nx) .

Exercise 4.
ut = uxx + 2t 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 100 t > 0
u(x, 0) = 0 0 < x < π

First seek a steady state function s(x) that satisfies the end points conditions. That is s′′(x) = 0,

s(0) = 0 and s(π) = 100. We find s(x) =
100x

π
.

Now let v(x, t) = u(x, t)− s(x). In order for u to solve the BVP, the function v must solve

vt = vxx + 2t 0 < x < π, t > 0
v(0, t) = 0, v(π, t) = 0 t > 0

v(x, 0) = −s(x) = −100x

π
0 < x < π

Seek a solution v in the form v(x, t) =
∑∞

n=1 cn(t) sin(nx) where the functions cn(t) are to be

determined. The Fourier sine series of 2t and −100x

π
are

2t =
4t

π

∞∑
n=1

1− (−1)n

n
sin(nx) and − 100x

π
= 200

∞∑
n=1

(−1)n

n
sin(nx) .
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For such v, the BVP can be written as
∞∑
n=1

c′n(t) sin(nx) = −
∞∑
n=1

n2cn(t) sin(nx) +
4t

π

∞∑
n=1

1− (−1)n

n
sin(nx)

∞∑
n=1

cn(0) sin(nx) = 200
∞∑
n=1

(−1)n

n
sin(nx)

The function cn(t) satisfies the initial value problem

c′n(t) + n2cn(t) =
4(1− (−1)n)t

nπ
, cn(0) =

200(−1)n

n

The UC method applied to the DE y′(t)+n2y(t) =
4(1− (−1)n)t

nπ
gives the general solution as

y = Ke−n2t +
4(1− (−1)n)

n3π

(
t− 1

n2

)
.

The solution that satisfies the initial condition is obtained for

K =
4(1− (−1)n)

πn5
+

200(−1)n

n

The solution of the original BVP is

u(x, t) = s(x) + v(x, t) =
100x

π
+

∞∑
n=1

cn(t) sin(nx) .

Exercise 6.
utt = uxx + sin(2x) 0 < x < π, t > 0
u(0, t) = 0, u(π, t) = 0 t > 0
u(x, 0) = sin x, ut(x, 0) = sin(3x) 0 < x < π

Seek a solution in the form u(x, t) =
∞∑
n=1

cn(t) sin(nx) with cn(t) function of t to be determined.

For such a function u(x, t) the BVP becomes
∞∑
n=1

(
c′′n(t) + n2cn(t)

)
sin(nx) = sin(2x)

∞∑
n=1

cn(0) sin(nx) = sin x

∞∑
n=1

c′n(0) sin(nx) = sin(3x)

This implies that for n ̸= 1, 2, 3 the function cn(t) satisfies

c′′n(t) + n2cn(t) = 0 , cn(0 = c′n(0) = 0 .

Hence cn(t) = 0 for n ̸= 1, 2, 3.

• For n = 1 we have

c′′1(t) + c1(t) = 0, c1(0) = 1, c′1(0) = 0

with solution c1(t) = cos t.
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• For n = 2 we have

c′′2(t) + 4c2(t) = 1, c2(0) = 0, c′2(0) = 0

with solution c2(t) =
1− cos(2t)

4
.

• For n = 3 we have

c′′3(t) + 9c3(t) = 0, c3(0) = 0, c′3(0) = 1

with solution c3(t) =
sin(3t)

3
.

The solution of the BVP is

u(x, t) = cos t sin x+
1− cos(2t)

4
sin 2x+

sin(3t)

3
sin(3x) .

Exercise 10. Let f(x, y) = 1 on the square [0, 1]2. Find
1. The Fourier cosine-cosine series of f .
2. The Fourier cosine-sine series of f .
3. The Fourier sine-sine series of f .
4. The Fourier sine-cosine series of f .

(1) Fourier cosine-cosine series: Since the function 1 is already an element of the basis, then
the Fourier cosine-cosine series of 1 is just the function 1.

(2) Fourier cosine-sine series:

1 =
1

2

∞∑
m=1

B0,m sin(my) +
∞∑
n=1

∞∑
m=1

Bnm cos(nx) sin(my)

with

Bnm =
4

π2

∫ π

0

∫ π

0

xy cos(nx) sin(my) dx dy.

We have

B0m =
4

π2

(∫ π

0

dx

) (∫ π

0

sin(my) dy

)
=

2(1− (−1)m)

mπ

and for n,m ≥ 1, Bn,m = 0. Hence for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, we have

1 =
2

π

∞∑
m=1

1− (−1)m

m
sin(mπy)

(3) Fourier sine-sine series:

1 =
∞∑
n=1

∞∑
m=1

Bnm sin(nπx) sin(mπy)

with

Bnm =
4

π2

∫ π

0

∫ π

0

sin(nπx) sin(mπy) dx dy.

Bn,m =
4(1− (−1)n)(1− (−1)m)

π2nm
.

Hence for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, we have

1 =
4

π2

∞∑
n=1

∞∑
m=1

[1− (−1)n] [1− (−1)m]

nm
sin(nπx) sin(mπy)
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(4) Fourier sine-cosine series: For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, we have

1 =
2

π

∞∑
n=1

1− (−1)n

n
sin(nπx)

Exercise 14.

utt = uxx + uyy, 0 < x < π, 0 < y < π, t > 0
u(0, y, t) = u(π, y, t) = 0, 0 < y < π, t > 0
u(x, 0, t) = u(x, π, t) = 0, 0 < x < π, t > 0
u(x, y, 0) = 0.05x(π − x)y(π − y) 0 < x < π, 0 < y < π
ut(x, y, 0) = 0 0 < x < π, 0 < y < π .

If u(x, y, t) = X(x)Y (y)T (t) is a nontrivial solution the homogeneous part of the BVP, then the
functions X, Y , and T solve the ODE problems: X ′′(x) + αX(x) = 0,

X(0) = 0, X(π) = 0

 Y ′′(y) + βY (y) = 0,

Y (0) = 0, Y (π) = 0

 T ′′(t) + λT (t) = 0

T ′(0) = 0

where α, β, λ are separation constants and λ = α + β.
The eigenvalues and eigenfunctions of the X-problem are:

αn = n2, Xn(x) = sin(nx), n = 1, 2, 3, · · ·
The eigenvalues and eigenfunctions of the Y -problem are:

βm = m2, Ym(y) = sin(my), m = 1, 2, 3, · · ·
For each pair of integers n,m, we have λnm = ω2

nm with ωnm =
√
n2 +m2 and an independent

solution of the T -problem is Tnm(t) = cos(ωnmt). The solutions with separated variables of the
homogeneous part are

cos(ωnmt) sin(nx) sin(my) .

The series representation of the general solution is

u(x, y, t) =
∞∑
n=1

∞∑
m=1

Cnm cos(ωnmt) sin(nx) sin(my) .

To find the constants Cnm so that u solves the complete BVP we use the nonhomogeneous
condition and then evaluate at t = 0.

ut(x, y, 0) = 0.05x(π − x)y(π − y) =
∞∑
n=1

∞∑
m=1

ωnmCnm sin(nx) sin(my) .

The last series is therefore the Fourier sine-sine series of the function 0.05x(π− x)y(π− y). We
have

Cnm =
4

π2

∫ π

0

∫ π

0

0.05x(π − x)y(π − y) sin(nx) sin(my) dxdy

An integration by parts gives

Cnm =
0.8

π2

[1− (−1)n] [1− (−1)m]

n3m3

Therefore the solution of the BVP is

u(x, y, t) =
0.8

π2

∞∑
n=1

∞∑
m=1

[1− (−1)n] [1− (−1)m]

n3m3
cos(ωnmt) sin(nx) sin(my) .


