TEST 3 - SOLUTIONS

Exercises from LN 9

Exercise 2. $y'' + \lambda y = 0$, -1 < x < 1, y(-1) = y(1) and y'(-1) = y'(1) (periodic SL problem)

Eigenvalues and eigenfunctions:

- $\lambda = 0$ is an eigenvalue with eigenfunction $y_0(x) = 1$.
- $\lambda = (k\pi)^2$ with eigenfunctions $\cos(k\pi x)$ and $\sin(k\pi x)$ with $k \in \mathbb{Z}^+$.

The expansion of a function f on the interval [-1, 1] is just the regular Fourier series. Since f(x) = 1 is already an eigenfunction, then it is equal to its Fourier series (i.e. $a_0/2 = 1$ and $a_n = b_n = 0$ for $n \ge 1$).

The function g(x) = x is odd, then $a_n = 0$ for all n and

$$b_n = 2\int_0^1 x\sin(n\pi x)dx = 2\frac{(-1)^{n+1}}{n}$$

Hence

$$x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\pi x) \,.$$

Exercise 4. $y'' + \lambda y = 0$, 0 < x < 1, y(0) = y'(0) and y(1) = y'(1)

Eigenvalues and eigenfunctions: Consider three cases

- Case $\lambda < 0$: Set $\lambda = -\nu^2$ with $\nu > 0$. The general solution of the DE is $y(x) = C_1 e^{\nu x} + C_2 e^{-\nu x}$ and $y'(x) = \nu(C_1 e^{\nu x} C_2 e^{-\nu x})$. The condition y(0) = y'(0) leads to $C_2(\nu + 1) = C_1(\nu 1)$ and the condition y(1) = y'(1) to the condition $C_2(\nu + 1)e^{-\nu} = C_1(\nu 1)e^{\nu}$. It follows that $C_2(\nu + 1)e^{-\nu} = C_2(\nu + 1)e^{\nu}$ and then $C_2 = 0$. This system reduces to $C_1(\nu 1) =$. If $C_1 \neq 0$, then $\nu = 1$ and we have nontrivial solution. Thus $\lambda_0 = -1$ is an eigenvalue with eigenfunction $y_0(x) = e^x$.
- Case $\lambda = 0$: The general solution of the DE is y(x) = Ax + B. The condition y(0) = y'(0) gives A = B. Then the condition y(1) = y'(1) gives 2A = A and so A = B = 0 and $\lambda = 0$ is not an eigenvalue.
- Case $\lambda > 0$: Set $\lambda = \nu^2$ with $\nu > 0$. The general solution of the DE is $y(x) = C_1 \cos(\nu x) + C_2 \sin(\nu x)$ and $y'(x) = \nu(-C_1 \sin(\nu x) + C_2 \cos(\nu x))$. The condition y(0) = y'(0) leads to $C_1 = \nu C_2$ and the condition y(1) = y'(1) leads to $C_1 \cos \nu + C_2 \sin \nu = -\nu C_1 \sin \nu + \nu C_2 \cos \nu$. After eliminating C_1 in the system we get $C_2(1 + \nu^2) \sin \nu = 0$. If $C_2 = 0$, then $C_1 = 0$ and the solution is trivial. In order to get a nontrivial solution, we need $C_2 \neq 0$, then $\sin \nu = 0$ and $\nu = k\pi$ with $k \in \mathbb{Z}^+$. The eigenvalues are then $\lambda_k = \nu_k^2 = (k\pi)^2$ with corresponding eigenfunction $y_k(x) = \nu_k \cos(\nu_k x) + \sin(\nu_k x)$.

Norms of eigenfunctions:

• For eigenvalue $\lambda_0 = -1$, eigenfunction $y_0(x) = e^x$

$$|y_0||^2 = \int_0^1 e^{2x} dx = \frac{e^2 - 1}{2}$$

• For eigenvalue $\lambda_k = \nu_k^2 = (k\pi)^2$, eigenfunction $y_k(x) = \nu_k \cos(\nu_k x) + \sin(\nu_k x)$

$$||y_k||^2 = \int_0^1 [\nu_k \cos(\nu_k x) + \sin(\nu_k x)]^2 dx = \frac{1 + \nu_k^2}{2}.$$

Expansion of f(x) = 1: We have $1 = c_0 y_0(x) + \sum_{k=1}^{\infty} c_k y_k(x)$ with $c_j = \frac{\langle 1, y_j \rangle}{\|y_j\|^2}$. We have

$$<1, y_0>=\int_0^1 e^x dx = e-1$$
 and $c_0=2\frac{e-1}{e^2-1}=\frac{2}{e+1}$

For $k \geq 1$, we have

$$<1, y_k> = \int_0^1 [\nu_k \cos(\nu_k x) + \sin(\nu_k x)] dx = \frac{1 - (-1)^k}{\nu_k} \text{ and } c_k = 2\frac{1 - (-1)^k}{\nu_k (1 + \nu_k^2)}$$

Therefore

$$1 = \frac{2e^x}{e+1} + 2\sum_{k=1}^{\infty} \frac{1 - (-1)^k}{\nu_k (1 + \nu_k^2)} [\nu_k \cos(\nu_k x) + \sin(\nu_k x)]$$

Expansion of g(x) = x: We have $x = c_0 y_0(x) + \sum_{k=1}^{\infty} c_k y_k(x)$ with $c_j = \frac{\langle x, y_j \rangle}{\|y_j\|^2}$. We have

$$\langle x, y_0 \rangle = \int_0^1 x e^x dx = [x e^x - e^x]_0^1 = 1$$
 and $c_0 = \frac{2}{e^2 - 1}$

For $k \geq 1$, we have

$$\langle x, y_k \rangle = \int_0^1 x [\nu_k \cos(\nu_k x) + \sin(\nu_k x)] dx = \frac{2(-1)^k - 1}{\nu_k} \text{ and } c_k = 2 \frac{2(-1)^k - 1}{\nu_k (1 + \nu_k^2)}$$

Therefore

$$x = \frac{2e^x}{e^2 - 1} + 2\sum_{k=1}^{\infty} \frac{2(-1)^k - 1}{\nu_k (1 + \nu_k^2)} [\nu_k \cos(\nu_k x) + \sin(\nu_k x)]$$

Exercise 6. Same questions as in Exercise 5 for the SL-problem

 $x^2y'' + xy' + \lambda y = 0, \quad 1 < x < L, \quad y'(1) = 0, \quad y'(L) = 0,$

- (1) Adjoint form of the DE: $(xy')' + \frac{\lambda}{x}y = 0.$
- (2) The weight associated with the SL-problem is $r(x) = \frac{1}{x}$ and the inner product is defined by

$$\langle f,g\rangle_r = \int_1^L f(x)g(x)\frac{1}{x}\,dx.$$

- (3) Note that the DE is Cauchy-Euler with characteristic equation $m^2 + \lambda = 0$. Consider 3 cases.
 - If $\lambda < 0$, set $\lambda = -\nu^2$ with $\nu > 0$. The general solution of the DE is $y(x) = Ax^{\nu} + Bx^{-\nu}$ and we have $y'(x) = \nu Ax^{\nu-1} \nu Bx^{-\nu-1}$. The condition y'(1) = 0 and y'(L) = 0 imply A B = 0 and $\nu (AL^{\nu-1} BL^{-\nu-1}) = 0$ since L > 1, $\nu > 0$, then the only solution is A = B = 0 and $\lambda < 0$ cannot be an eigenvalue.
 - If $\lambda = 0$. The general solution of the DE is $y(x) = A + B \ln x$ and y'(x) = B/x. The condition y'(1) = 0 and y'(L) = 0 imply B = 0 and A arbitrary. Therefore $\lambda = 0$ is an eigenvalue with eigenfunction $y_0(x) = 1$.
 - If $\lambda > 0$, set $\lambda = \nu^2$ with $\nu > 0$. The general solution of the DE is $y(x) = A\cos(\nu \ln x) + B\sin(\nu \ln x)$ and

$$y'(x) = \frac{\nu}{x} [-A\sin(\nu \ln x) + B\cos(\nu \ln x)].$$

The condition y'(1) = 0 gives B = 0. Then y'(L) = 0 implies $\frac{\nu A}{L} \sin(\nu \ln L) = 0$. To obtain y nontrivial, we need $A \neq 0$ and then $\sin(\nu \ln L) = 0$. Therefore $\nu \ln L = n\pi$ with $n \in \mathbb{Z}^+$. In this case the eigenvalues and eigenfunctions are:

$$\lambda_n = \nu_n^2 = \left(\frac{n\pi}{\ln L}\right)^2, \quad y_n(x) = \cos(\nu_n \ln x) = \cos\left(n\pi \frac{\ln x}{\ln L}\right), \quad n \in \mathbb{Z}^+$$

(4) The norms of the eigenfunctions are

$$||y_0||^2 = \langle y_0, y_0 \rangle_r \int_1^L \frac{dx}{x} = \ln L$$

For $n \ge 1$

$$||y_n||^2 = \langle y_n, y_n \rangle_r = \int_1^L \cos^2(\nu_n \ln x) \frac{dx}{x} = \int_1^L \cos^2\left(n\pi \frac{\ln x}{\ln L}\right) \frac{dx}{x}.$$

To compute the integral, we use the substitution $t = \ln x$ so that $dt = \frac{dx}{x}$ and obtain

$$||y_n||^2 = \int_0^{\ln L} \cos^2\left(\frac{n\pi}{\ln L}t\right) dt = \frac{\ln L}{2}$$

• Expansion of f(x) = 1 in y_n 's: Since $y_0(x) = 1$ is already an element of the orthogonal basis then we have $1 = c_0 + \sum_{n=1}^{\infty} c_n y_n(x)$ with $c_0 = 1$ and $c_n = 0$ for $n \ge 1$.

• Expansion of
$$g(x) = x$$
 in y_n 's: We have $x = c_0 + \sum_{n=1}^{\infty} c_n y_n(x)$ with
 $c_0 = \frac{\langle x, y_0 \rangle_r}{\|y_0\|^2} = \frac{1}{\ln L} \langle x, y_0 \rangle_r = \frac{2}{\ln L} \int_1^L dx = \frac{L-1}{\ln L}$

and for $n \ge 1$

$$c_n = \frac{\langle x, y_n \rangle_r}{\|y_n\|^2} = \frac{2}{\ln L} \langle x, y_n \rangle_r = \frac{2}{\ln L} \int_1^L x \cos(\nu_n \ln x) \frac{dx}{x}$$
$$= \frac{2}{\ln L} \int_0^{\ln L} e^t \cos\left(\frac{n\pi}{\ln L}t\right) dt$$
Since $\int e^t \cos(at) dt = \frac{e^t [\cos(at) + a\sin(at)]}{1 + a^2} + C$, then

$$c_n = \frac{2L}{\ln L} \frac{(-1)^n - 1}{1 + \nu_n^2}$$

We have

$$x = \frac{L-1}{\ln L} + \frac{2L}{\ln L} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{1 + \nu_n^2} \cos(\nu_n \ln x) \; .$$

Exercise 8. Solve the BVP

$$u_t = u_{xx} 0 < x < \pi, t > 0, u_x(0,t) = 0 t > 0 u(\pi,t) = u_x(\pi,t) t > 0 u(x,0) = 1 0 < x < \pi$$

We proceed by finding solutions with separated variables u(x,t) = X(x)T(t) of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$\begin{cases} X''(x) + \lambda X(x) = 0\\ X'(0) = 0, \quad X(\pi) = X'(\pi) \end{cases}, \qquad T'(t) + \lambda T(t) = 0.$$

To find the eigenvalues and eigenfunctions of the X-problem, we consider 3 cases

• Case $\lambda = -\nu^2$ with $\nu > 0$. In this case the general solution of the ODE is $X(x) = Ae^{\nu x} + Be^{-\nu x}$ and $X'(x) = \nu Ae^{\nu x} - \nu Be^{-\nu x}$. The condition X'(0) = 0 leads to A - B = 0 (or A = B) and then the condition $X(\pi) = X'(\pi)$ leads to $A(e^{\nu \pi} + e^{-\nu \pi}) = A\nu(e^{\nu \pi} - e^{-\nu \pi})$ if $A \neq 0$, then ν must satisfy $(e^{\nu \pi} + e^{-\nu \pi}) = \nu(e^{\nu \pi} - e^{-\nu \pi})$ or equivalently $e^{2\pi\nu} = \frac{\nu + 1}{\nu - 1}$. This equation has a unique positive solution $\nu_0 \in (1, 2)$ (see figure) Hence $\lambda_0 = -\nu_0^2$ is

FIGURE 1. Positive solutions of $e^{2\pi\nu} = \frac{\nu+1}{\nu-1}$

an eigenvalue with corresponding eigenfunction $X_0(x) = \cosh(\nu_0 x)$.

- Case $\lambda = 0$. It is easily verified that 0 is not an eigenvalue.
- Case $\lambda = \nu^2$ with $\nu > 0$. The general solution of the ODE is $X(x) = A\cos(\nu x) + B\sin(\nu x)$. The condition X'(0) = 0 implies B = 0. Then the condition $X(\pi) = X'(\pi) = 0$ leads to $A\cos(\nu\pi) = -A\nu\sin(\nu\pi)) = 0$. For $A \neq 0$, ν needs to satisfy $\tan(\nu\pi) = \frac{-1}{\nu}$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^+$, the equation has a unique solution ν_n in the interval $\left(n \frac{1}{2}, n\right)$ (see figure). The eigenvalues and eigenfunctions of the X-problem are:

$$\lambda_n = \nu_n^2$$
, with $\nu_n \in \left(n - \frac{1}{2}, n\right)$ $\tan(\nu_n \pi) = -\frac{1}{\nu_n}$, and $X_n(x) = \cos(\nu_n x)$.

The corresponding solutions of the T-problem are:

For
$$\lambda_0 = -\nu_0^2$$
, $T_0(t) = e^{\nu_0^2 t}$;
For $\lambda_n = \nu_n^2$, $T_n(t) = e^{-\nu_n^2 t}$, $n \in \mathbb{Z}^+$.

The solutions with separated variables of the homogeneous part of the BVP are

$$\mathrm{e}^{\nu_0^2 t} \cosh(\nu_0 x), \quad \mathrm{e}^{-\nu_n^2 t} \cos(\nu_n x), \quad n \in \mathbb{Z}^+.$$

The series representation of the general solution of the HP is

$$u(x,t) = c_0 e^{\nu_0^2 t} \cosh(\nu_0 x) + \sum_{n=1}^{\infty} c_n e^{-\nu_n^2 t} \cos(\nu_n x) \,.$$

FIGURE 2. Positive solutions of $tan(\nu \pi) = -\frac{1}{\nu}$

In order for u to satisfy the completed BVP, we need to have

$$u(x,0) = 1 = c_0 \cosh(\nu_0 x) + \sum_{n=1}^{\infty} c_n \cos(\nu_n x)$$

The series is the generalized Fourier expansion of $\sin x$ in eigenfunctions of the X-problem. Thus

$$c_0 = \frac{\langle 1, \cosh(\nu_0 x) \rangle}{\|\cosh(\nu_0 x)\|^2}$$
 and $c_n = \frac{\langle 1, \cos(\nu_n x) \rangle}{\|\cos(\nu_n x)\|^2}$ for $n \ge 1$.

We have

$$\|\cosh(\nu_0 x)\|^2 = \int_0^{\pi} \cosh(\nu_0 x) \, dx = \frac{1}{2} \int_0^{\pi} (1 + \cosh(2\nu_0 x)) \, dx$$
$$= \frac{1}{2} \left(\pi + \frac{\sinh(2\nu_0 \pi)}{2\nu_0} \right) = \frac{2\pi\nu_0 + \sinh^2(\nu_0 \pi)}{4\nu_0};$$
$$\|\cos(\nu_n x)\|^2 = \int_0^{\pi} \cos^2(\nu_n x) \, dx = \frac{1}{2} \int_0^{\pi} (1 + \cos(2\nu_n x)) \, dx$$
$$= \frac{1}{2} \left(\pi + \frac{\sin(2\nu_n \pi)}{2\nu_n} \right) = \frac{\pi - \sin^2(\nu_n \pi)}{2}.$$

and

$$\langle 1, \cosh(\nu_0 x) \rangle = \int_0^\pi \cosh(\nu_0 x) \, dx = \frac{\sinh(\nu_0 \pi)}{\nu_0}$$
$$\langle 1, \cos(\nu_n x) \rangle = \int_0^\pi \cos(\nu_n x) \, dx = \frac{\sinh(\nu_n \pi)}{\nu_n}.$$

Hence

$$c_0 = \frac{4\sinh(\nu_0\pi)}{2\pi\nu_0 + \sinh(2\nu_0\pi)} \text{ and } c_n = \frac{2\sin(\nu_n x)}{\nu_n(\pi - \sin^2(\nu_n \pi))}$$

and the solution of the BVP is

$$u(x,t) = \frac{4\sinh(\nu_0\pi)}{2\pi\nu_0 + \sinh(2\nu_0\pi)} e^{\nu_0^2 t} \cosh(\nu_0 x) + \sum_{n=1}^{\infty} \frac{2\sin(\nu_n x)}{\nu_n(\pi - \sin^2(\nu_n \pi))} e^{-\nu_n^2 t} \cos(\nu_n x) \,.$$

Exercise 10. Solve the BVP

$$\begin{array}{ll} u_{tt} = c^2 u_{xx} & 0 < x < \pi, \ t > 0, \\ u(0,t) = 0 & t > 0 \\ u(\pi,t) - u_x(\pi,t) = 0 & t > 0 \\ u(x,0) = 0 & 0 < x < \pi \\ u_t(x,0) = f(x) & 0 < x < \pi \end{array}$$

where

$$f(x) = \begin{cases} 0 & \text{if } 0 < x < (\pi/2), \\ 1 & \text{if } (\pi/2) < x < \pi. \end{cases}$$

We proceed by finding solutions with separated variables u(x,t) = X(x)T(t) of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = 0, \quad X(\pi) = X'(\pi) \end{cases}, \qquad \begin{cases} T''(t) + c^2 \lambda T(t) = 0, \\ T(0) = 0 \end{cases}$$

To find the eigenvalues of the X-problem, we consider three cases.

- $\lambda < 0$. Set $\lambda = -\mu^2$ with $\mu > 0$. In this case the general solution of the ODE is $X(x) = A \cosh(\mu x) + B \sinh(\mu x)$. The condition X(0) = 0 implies A = 0, then the second condition leads to $B \sinh(\mu \pi) = B\mu \cosh(\mu \pi)$. For $B \neq 0$, the parameter μ must satisfy $\sinh(\mu \pi) = \mu \cosh(\mu \pi)$ or equivalently $e^{2\mu\pi} = \frac{1+\mu}{1-\mu}$. This equation has a unique positive solution μ_0 with $\mu_0 \in (0, 1)$. In fact $\mu_0 \approx 0.996$. Hence $\lambda_0 = -\mu_0^2$ is an eigenvalue with corresponding eigenfunction $X_0(x) = \sinh(\mu_0 x)$.
- It can be verified that $\lambda = 0$ is not an eigenvalue.
- $\lambda > 0$. Set $\lambda = \nu^2$ with $\nu > 0$. The general solution of the ODE is $X(x) = A\cos(\nu x) + B\sin(\nu x)$. The condition X(0) = 0 implies A = 0. Then the condition $X(\pi) = X'(\pi)$ leads to $B\sin(\nu\pi) = B\nu\cos(\nu\pi)$. For $B \neq 0$, ν needs to satisfy $\sin(\nu\pi) = \nu\cos(\nu\pi)$ or $\tan(\nu\pi) = \nu$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^+$, the equation has a unique solution ν_n in the interval $\left(n, \frac{2n+1}{2}\right)$. The eigenvalues and eigenfunctions of the X-problem are $\lambda_n = \nu_n^2$ and the corresponding eigenfunction $X_n(x) = \sin(\nu_n x)$.

For the negative eigenvalue $\lambda_0 = -\mu_0^2$, the corresponding *T*-equation becomes $T'' - c^2 \mu_0^2 T = 0$ with general solution $T(t) = A \cosh(c\mu_0 t) + B \sinh(c\mu_0 t)$. The condition T(0) = 0 implies A = 0. The solution of HP of the BVP with separated variables is

$$u_0(x,t) = \sinh(c\mu_0 t)\sinh(\mu_0 x).$$

For the positive eigenvalues $\lambda_n = \nu_n^2$, the corresponding *T*-equation becomes $T'' + c^2 \nu_n^2 T = 0$ with general solution $T(t) = A \cos(c\nu_n t) + B \sin(c\nu_n t)$. The condition T(0) = 0 implies A = 0. The solution of HP of the BVP with separated variables is

$$u_n(x,t) = \sin(c\nu_n t)\sin(\nu_n x).$$

The series representation of the general solution of HP is therefore

$$u(x,t) = c_0 \sinh(c\mu_0 t) \sinh(\mu_0 x) + \sum_{n=1}^{\infty} c_n \sin(c\nu_n t) \sin(\nu_n x).$$

$$u_t(x,0) = f(x) = (c\mu_0)c_0\sinh(\mu_0 x) + \sum_{n=1}^{\infty} (c\mu_n)c_n\sin(\nu_n x).$$

Therefore

$$(c\mu_0)c_0 = \frac{\langle f(x), \sinh(\mu_0 x) \rangle}{\|\sinh(\mu_0 x)\|^2}$$
 and $(c\mu_n)c_n = \frac{\langle f(x), \sin(\nu_n x) \rangle}{\|\sin(\nu_n x)\|^2}$.

We have

$$\|\sinh(\mu_0 x)\|^2 = \int_0^\pi \sinh(\mu_0 x)^2 dx = \frac{1}{2} \int_0^\pi \left[\cosh(2\mu_0 x) - 1\right] dx$$

$$= \frac{\sinh(2\mu_0\pi)}{4\mu_0} - \frac{\pi}{2} = \frac{\cosh^2(\mu_0\pi) - \pi}{2};$$

$$\|\sin(\nu_n x)\|^2 = \int_0^\pi \sin(\nu_n x)^2 dx = \frac{1}{2} \int_0^\pi [1 - \cos(2\nu_n x)] dx$$

$$= \frac{\pi}{2} - \frac{\sin(2\nu_n \pi)}{4\nu_n} = \frac{\pi - \cos^2(\nu_n \pi)}{2};$$

$$\langle f(x), \sinh(\mu_0 x) \rangle = \int_{\pi/2}^{\pi} \sinh(\mu_0 x) dx = \frac{\cosh(\mu_0 \pi) - \cosh(\mu_0 \pi/2)}{\mu_0}$$

$$\langle f(x), \sin(\mu_n x) \rangle = \int_{\pi/2}^{\pi} \sin(\mu_n x) dx = \frac{\cos(\mu_n \pi/2) - \cos(\mu_n \pi)}{\mu_n}$$

Hence

$$c_0 = \frac{\cosh^2(\mu_0 \pi) - \pi}{2c(\cosh(\mu_0 \pi) - \cosh(\mu_0 \pi/2))} \quad \text{and} \quad c_n = \frac{2(\cos(\mu_n \pi/2) - \cos(\mu_n \pi))}{c\mu_n^2(\pi - \cos^2(\mu_n \pi))}.$$

The solution of the BVP is:

$$u(x,t) = \frac{(\cosh^2(\mu_0\pi) - \pi)\sinh(c\mu_0t)\sinh(\mu_0x)}{2c(\cosh(\mu_0\pi) - \cosh(\mu_0\pi/2))} + \sum_{n=1}^{\infty} \frac{2(\cos(\mu_n\pi/2) - \cos(\mu_n\pi))\sin(c\mu_nt)\sin(\mu_nx)}{c\mu_n^2(\pi - \cos^2(\mu_n\pi))}.$$

Exercises from LN 10

Exercise 2.

$$u_t = u_{xx} + e^{-x} \qquad 0 < x < \pi, \ t > 0$$

$$u(0,t) = 0, \ u(\pi,t) = 0 \qquad t > 0$$

$$u(x,0) = 0 \qquad 0 < x < \pi$$

We use the eigenfunctions expansion of the SL-problem $X'' + \lambda X = 0$, $X(0) = X(\pi) = 0$. That is, seek u(x,t) as

$$u(x,t) = \sum_{n=1}^{\infty} c_n(t) \sin(nx) \, .$$

where $c_n(t)$ are functions of t that need to be determined. Since Fourier sine series of e^{-x} over [0, π] is

$$e^{-x} = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n(1+(-1)^n e^{-\pi})}{1+n^2} \sin(nx)$$

the PDE $u_t = u_{xx} + e^{-x}$ can be rewritten as

$$\sum_{n=1}^{\infty} c'_n(t) \sin(nx) = -\sum_{n=1}^{\infty} n^2 c_n(t) \sin(nx) + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n(1+(-1)^n e^{-\pi})}{1+n^2} \sin(nx).$$

The initial condition u(x,0) = 0 implies that $c_n(0) = 0$ for all $n \ge 1$. It follows that for $n \ge 1$, the function $c_n(t)$ satisfies the first order linear ODE problem

$$c'_n(t) + n^2 c_n(t) = \frac{2n(1 + (-1)^n e^{-\pi})}{\pi(1 + n^2)}, \quad c_n(0) = 0.$$

We use the method of undetermined coefficients to find

$$c_n(t) = \frac{2(1 + (-1)^n e^{-\pi})}{n\pi(1 + n^2)} \left(1 - e^{-n^2 t}\right).$$

Therefore the solution of the BVP is

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2(1+(-1)^n e^{-\pi})}{n\pi(1+n^2)} \left(1-e^{-n^2t}\right) \sin(nx).$$

Exercise 4.

$$u_t = u_{xx} + 2t \qquad 0 < x < \pi, \ t > 0$$

$$u(0,t) = 0, \ u(\pi,t) = 100 \qquad t > 0$$

$$u(x,0) = 0 \qquad 0 < x < \pi$$

First seek a steady state function s(x) that satisfies the end points conditions. That is s''(x) = 0, s(0) = 0 and $s(\pi) = 100$. We find $s(x) = \frac{100x}{\pi}$.

Now let v(x,t) = u(x,t) - s(x). In order for u to solve the BVP, the function v must solve

$$v_t = v_{xx} + 2t \qquad 0 < x < \pi, \ t > 0$$

$$v(0,t) = 0, \ v(\pi,t) = 0 \qquad t > 0$$

$$v(x,0) = -s(x) = -\frac{100x}{\pi} \qquad 0 < x < \pi$$

Seek a solution v in the form $v(x,t) = \sum_{n=1}^{\infty} c_n(t) \sin(nx)$ where the functions $c_n(t)$ are to be determined. The Fourier sine series of 2t and $-\frac{100x}{\pi}$ are

$$2t = \frac{4t}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin(nx) \quad \text{and} \quad -\frac{100x}{\pi} = 200 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(nx) \,.$$

For such v, the BVP can be written as

$$\sum_{n=1}^{\infty} c'_n(t) \sin(nx) = -\sum_{n=1}^{\infty} n^2 c_n(t) \sin(nx) + \frac{4t}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin(nx)$$
$$\sum_{n=1}^{\infty} c_n(0) \sin(nx) = 200 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(nx)$$

The function $c_n(t)$ satisfies the initial value problem

$$c'_{n}(t) + n^{2}c_{n}(t) = \frac{4(1 - (-1)^{n})t}{n\pi}, \quad c_{n}(0) = \frac{200(-1)^{n}}{n}$$

The UC method applied to the DE $y'(t) + n^2 y(t) = \frac{4(1 - (-1)^n)t}{n\pi}$ gives the general solution as

$$y = K e^{-n^2 t} + \frac{4(1 - (-1)^n)}{n^3 \pi} \left(t - \frac{1}{n^2} \right) \,.$$

The solution that satisfies the initial condition is obtained for

$$K = \frac{4(1 - (-1)^n)}{\pi n^5} + \frac{200(-1)^n}{n}$$

The solution of the original BVP is

$$u(x,t) = s(x) + v(x,t) = \frac{100x}{\pi} + \sum_{n=1}^{\infty} c_n(t) \sin(nx) \,.$$

Exercise 6.

$$u_{tt} = u_{xx} + \sin(2x) \qquad 0 < x < \pi, \ t > 0$$

$$u(0,t) = 0, \ u(\pi,t) = 0 \qquad t > 0$$

$$u(x,0) = \sin x, \ u_t(x,0) = \sin(3x) \qquad 0 < x < \pi$$

Seek a solution in the form $u(x,t) = \sum_{n=1}^{\infty} c_n(t) \sin(nx)$ with $c_n(t)$ function of t to be determined. For such a function u(x,t) the BVP becomes

$$\sum_{n=1}^{\infty} \left(c_n''(t) + n^2 c_n(t) \right) \sin(nx) = \sin(2x)$$
$$\sum_{n=1}^{\infty} c_n(0) \sin(nx) = \sin x$$
$$\sum_{n=1}^{\infty} c_n'(0) \sin(nx) = \sin(3x)$$

This implies that for $n \neq 1, 2, 3$ the function $c_n(t)$ satisfies

$$c''_n(t) + n^2 c_n(t) = 0$$
, $c_n(0 = c'_n(0) = 0$.

Hence $c_n(t) = 0$ for $n \neq 1, 2, 3$.

• For n = 1 we have

$$c_1''(t) + c_1(t) = 0, \quad c_1(0) = 1, \quad c_1'(0) = 0$$

with solution $c_1(t) = \cos t$.

• For n = 2 we have

$$c_2''(t) + 4c_2(t) = 1, \quad c_2(0) = 0, \quad c_2'(0) = 0$$

with solution $c_2(t) = \frac{1 - \cos(2t)}{4}$.

• For n = 3 we have

$$c_3''(t) + 9c_3(t) = 0, \quad c_3(0) = 0, \quad c_3'(0) = 1$$

with solution $c_3(t) = \frac{\sin(3t)}{3}$.

The solution of the BVP is

$$u(x,t) = \cos t \sin x + \frac{1 - \cos(2t)}{4} \sin 2x + \frac{\sin(3t)}{3} \sin(3x).$$

Exercise 10. Let f(x, y) = 1 on the square $[0, 1]^2$. Find

- 1. The Fourier cosine-cosine series of f.
- 2. The Fourier cosine-sine series of f.
- 3. The Fourier sine-sine series of f.
- 4. The Fourier sine-cosine series of f.
- (1) <u>Fourier cosine-cosine series</u>: Since the function 1 is already an element of the basis, then the Fourier cosine-cosine series of 1 is just the function 1.
- (2) Fourier cosine-sine series:

$$1 = \frac{1}{2} \sum_{m=1}^{\infty} B_{0,m} \sin(my) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{nm} \cos(nx) \sin(my)$$

with

$$B_{nm} = \frac{4}{\pi^2} \int_0^{\pi} \int_0^{\pi} xy \cos(nx) \sin(my) \, dx \, dy.$$

We have

$$B_{0m} = \frac{4}{\pi^2} \left(\int_0^\pi dx \right) \left(\int_0^\pi \sin(my) \, dy \right) = \frac{2(1 - (-1)^m)}{m\pi}$$

and for $n, m \ge 1$, $B_{n,m} = 0$. Hence for $0 \le x \le 1$, $0 \le y \le 1$, we have

$$1 = \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1 - (-1)^m}{m} \sin(m\pi y)$$

(3) Fourier sine-sine series:

$$1 = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{nm} \sin(n\pi x) \, \sin(m\pi y)$$

with

$$B_{nm} = \frac{4}{\pi^2} \int_0^{\pi} \int_0^{\pi} \sin(n\pi x) \sin(m\pi y) \, dx \, dy.$$
$$B_{n,m} = \frac{4(1 - (-1)^n)(1 - (-1)^m)}{\pi^2 nm}.$$

Hence for $0 \le x \le 1$, $0 \le y \le 1$, we have

$$1 = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{[1 - (-1)^n] [1 - (-1)^m]}{nm} \sin(n\pi x) \sin(m\pi y)$$

(4) Fourier sine-cosine series: For $0 \le x \le 1$, $0 \le y \le 1$, we have

$$1 = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin(n\pi x)$$

Exercise 14.

$$\begin{split} & u_{tt} = u_{xx} + u_{yy}, & 0 < x < \pi, \ 0 < y < \pi, \ t > 0 \\ & u(0,y,t) = u(\pi,y,t) = 0, & 0 < y < \pi, \ t > 0 \\ & u(x,0,t) = u(x,\pi,t) = 0, & 0 < x < \pi, \ t > 0 \\ & u(x,y,0) = 0.05x(\pi-x)y(\pi-y) & 0 < x < \pi, \ 0 < y < \pi \\ & u_t(x,y,0) = 0 & 0 < x < \pi, \ 0 < y < \pi . \end{split}$$

If u(x, y, t) = X(x)Y(y)T(t) is a nontrivial solution the homogeneous part of the BVP, then the functions X, Y, and T solve the ODE problems:

$$\begin{cases} X''(x) + \alpha X(x) = 0, \\ X(0) = 0, \ X(\pi) = 0 \end{cases} \begin{cases} Y''(y) + \beta Y(y) = 0, \\ Y(0) = 0, \ Y(\pi) = 0 \end{cases} \begin{cases} T''(t) + \lambda T(t) = 0 \\ T'(0) = 0 \end{cases}$$

where α , β , λ are separation constants and $\lambda = \alpha + \beta$. The eigenvalues and eigenfunctions of the X-problem are:

$$\alpha_n = n^2$$
, $X_n(x) = \sin(nx)$, $n = 1, 2, 3, \cdots$

The eigenvalues and eigenfunctions of the Y-problem are:

$$\beta_m = m^2$$
, $Y_m(y) = \sin(my)$, $m = 1, 2, 3, \cdots$

For each pair of integers n, m, we have $\lambda_{nm} = \omega_{nm}^2$ with $\omega_{nm} = \sqrt{n^2 + m^2}$ and an independent solution of the *T*-problem is $T_{nm}(t) = \cos(\omega_{nm}t)$. The solutions with separated variables of the homogeneous part are

 $\cos(\omega_{nm}t)\,\sin(nx)\,\sin(my)\,.$

The series representation of the general solution is

$$u(x, y, t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{nm} \cos(\omega_{nm} t) \, \sin(nx) \, \sin(my) \, .$$

To find the constants C_{nm} so that u solves the complete BVP we use the nonhomogeneous condition and then evaluate at t = 0.

$$u_t(x, y, 0) = 0.05x(\pi - x)y(\pi - y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \omega_{nm} C_{nm} \sin(nx) \sin(my).$$

The last series is therefore the Fourier sine-sine series of the function $0.05x(\pi - x)y(\pi - y)$. We have

$$C_{nm} = \frac{4}{\pi^2} \int_0^{\pi} \int_0^{\pi} 0.05x(\pi - x)y(\pi - y) \sin(nx) \sin(my) \, dx \, dy$$

An integration by parts gives

$$C_{nm} = \frac{0.8}{\pi^2} \frac{\left[1 - (-1)^n\right] \left[1 - (-1)^m\right]}{n^3 m^3}$$

Therefore the solution of the BVP is

$$u(x,y,t) = \frac{0.8}{\pi^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{[1-(-1)^n] [1-(-1)^m]}{n^3 m^3} \cos(\omega_{nm} t) \sin(nx) \sin(my).$$