TEST 3 - SOLUTIONS

Exercises from LN 9

Exercise 2. $y^{\prime \prime}+\lambda y=0,-1<x<1, y(-1)=y(1)$ and $y^{\prime}(-1)=y^{\prime}(1)$ (periodic SL problem)

Eigenvalues and eigenfunctions:

- $\lambda=0$ is an eigenvalue with eigenfunction $y_{0}(x)=1$.
- $\lambda=(k \pi)^{2}$ with eigenfunctions $\cos (k \pi x)$ and $\sin (k \pi x)$ with $k \in \mathbb{Z}^{+}$.

The expansion of a function f on the interval $[-1,1]$ is just the regular Fourier series. Since $f(x)=1$ is already an eigenfunction, then it is equal to its Fourier series (i.e. $a_{0} / 2=1$ and $a_{n}=b_{n}=0$ for $n \geq 1$).

The function $g(x)=x$ is odd, then $a_{n}=0$ for all n and

$$
b_{n}=2 \int_{0}^{1} x \sin (n \pi x) d x=2 \frac{(-1)^{n+1}}{n}
$$

Hence

$$
x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n \pi x) .
$$

Exercise 4. $y^{\prime \prime}+\lambda y=0, \quad 0<x<1, \quad y(0)=y^{\prime}(0)$ and $y(1)=y^{\prime}(1)$
Eigenvalues and eigenfunctions: Consider three cases

- Case $\lambda<0$: Set $\lambda=-\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=$ $C_{1} \mathrm{e}^{\nu x}+C_{2} \mathrm{e}^{-\nu x}$ and $y^{\prime}(x)=\nu\left(C_{1} \mathrm{e}^{\nu x}-C_{2} \mathrm{e}^{-\nu x}\right)$. The condition $y(0)=y^{\prime}(0)$ leads to $C_{2}(\nu+1)=C_{1}(\nu-1)$ and the condition $y(1)=y^{\prime}(1)$ to the condition $C_{2}(\nu+1) \mathrm{e}^{-\nu}=$ $C_{1}(\nu-1) \mathrm{e}^{\nu}$. It follows that $C_{2}(\nu+1) \mathrm{e}^{-\nu}=C_{2}(\nu+1) \mathrm{e}^{\nu}$ and then $C_{2}=0$. This system reduces to $C_{1}(\nu-1)=$. If $C_{1} \neq 0$, then $\nu=1$ and we have nontrivial solution. Thus $\lambda_{0}=-1$ is an eigenvalue with eigenfunction $y_{0}(x)=\mathrm{e}^{x}$.
- Case $\lambda=0$: The general solution of the DE is $y(x)=A x+B$. The condition $y(0)=y^{\prime}(0)$ gives $A=B$. Then the condition $y(1)=y^{\prime}(1)$ gives $2 A=A$ and so $A=B=0$ and $\lambda=0$ is not an eigenvalue.
- Case $\lambda>0$: Set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=$ $C_{1} \cos (\nu x)+C_{2} \sin (\nu x)$ and $y^{\prime}(x)=\nu\left(-C_{1} \sin (\nu x)+C_{2} \cos (\nu x)\right)$. The condition $y(0)=$ $y^{\prime}(0)$ leads to $C_{1}=\nu C_{2}$ and the condition $y(1)=y^{\prime}(1)$ leads to $C_{1} \cos \nu+C_{2} \sin \nu=$ $-\nu C_{1} \sin \nu+\nu C_{2} \cos \nu$. After eliminating C_{1} in the system we get $C_{2}\left(1+\nu^{2}\right) \sin \nu=0$. If $C_{2}=0$, then $C_{1}=0$ and the solution is trivial. In order to get a nontrivial solution, we need $C_{2} \neq 0$, then $\sin \nu=0$ and $\nu=k \pi$ with $k \in \mathbb{Z}^{+}$. The eigenvalues are then $\lambda_{k}=\nu_{k}^{2}=(k \pi)^{2}$ with corresponding eigenfunction $y_{k}(x)=\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)$.

Norms of eigenfunctions:

- For eigenvalue $\lambda_{0}=-1$, eigenfunction $y_{0}(x)=\mathrm{e}^{x}$

$$
\left\|y_{0}\right\|^{2}=\int_{0}^{1} \mathrm{e}^{2 x} d x=\frac{\mathrm{e}^{2}-1}{2}
$$

- For eigenvalue $\lambda_{k}=\nu_{k}^{2}=(k \pi)^{2}$, eigenfunction $y_{k}(x)=\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)$

$$
\left\|y_{k}\right\|^{2}=\int_{0}^{1}\left[\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)\right]^{2} d x=\frac{1+\nu_{k}^{2}}{2}
$$

Expansion of $f(x)=1$: We have $1=c_{0} y_{0}(x)+\sum_{k=1}^{\infty} c_{k} y_{k}(x)$ with $c_{j}=\frac{<1, y_{j}>}{\left\|y_{j}\right\|^{2}}$. We have

$$
<1, y_{0}>=\int_{0}^{1} \mathrm{e}^{x} d x=\mathrm{e}-1 \quad \text { and } \quad c_{0}=2 \frac{\mathrm{e}-1}{\mathrm{e}^{2}-1}=\frac{2}{\mathrm{e}+1}
$$

For $k \geq 1$, we have

$$
<1, y_{k}>=\int_{0}^{1}\left[\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)\right] d x=\frac{1-(-1)^{k}}{\nu_{k}} \quad \text { and } \quad c_{k}=2 \frac{1-(-1)^{k}}{\nu_{k}\left(1+\nu_{k}^{2}\right)}
$$

Therefore

$$
1=\frac{2 \mathrm{e}^{x}}{\mathrm{e}+1}+2 \sum_{k=1}^{\infty} \frac{1-(-1)^{k}}{\nu_{k}\left(1+\nu_{k}^{2}\right)}\left[\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)\right]
$$

Expansion of $g(x)=x$: We have $x=c_{0} y_{0}(x)+\sum_{k=1}^{\infty} c_{k} y_{k}(x)$ with $c_{j}=\frac{\left.<x, y_{j}\right\rangle}{\left\|y_{j}\right\|^{2}}$. We have

$$
<x, y_{0}>=\int_{0}^{1} x \mathrm{e}^{x} d x=\left[x \mathrm{e}^{x}-\mathrm{e}^{x}\right]_{0}^{1}=1 \quad \text { and } \quad c_{0}=\frac{2}{\mathrm{e}^{2}-1}
$$

For $k \geq 1$, we have

$$
<x, y_{k}>=\int_{0}^{1} x\left[\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)\right] d x=\frac{2(-1)^{k}-1}{\nu_{k}} \quad \text { and } \quad c_{k}=2 \frac{2(-1)^{k}-1}{\nu_{k}\left(1+\nu_{k}^{2}\right)}
$$

Therefore

$$
x=\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{2}-1}+2 \sum_{k=1}^{\infty} \frac{2(-1)^{k}-1}{\nu_{k}\left(1+\nu_{k}^{2}\right)}\left[\nu_{k} \cos \left(\nu_{k} x\right)+\sin \left(\nu_{k} x\right)\right]
$$

Exercise 6. Same questions as in Exercise 5 for the SL-problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad 1<x<L, \quad y^{\prime}(1)=0, \quad y^{\prime}(L)=0,
$$

(1) Adjoint form of the DE: $\left(x y^{\prime}\right)^{\prime}+\frac{\lambda}{x} y=0$.
(2) The weight associated with the SL-problem is $r(x)=\frac{1}{x}$ and the inner product is defined by

$$
\langle f, g\rangle_{r}=\int_{1}^{L} f(x) g(x) \frac{1}{x} d x
$$

(3) Note that the DE is Cauchy-Euler with characteristic equation $m^{2}+\lambda=0$. Consider 3 cases.

- If $\lambda<0$, set $\lambda=-\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=$ $A x^{\nu}+B x^{-\nu}$ and we have $y^{\prime}(x)=\nu A x^{\nu-1}-\nu B x^{-\nu-1}$. The condition $y^{\prime}(1)=0$ and $y^{\prime}(L)=0$ imply $A-B=0$ and $\nu\left(A L^{\nu-1}-B L^{-\nu-1}\right)=0$ since $L>1, \nu>0$, then the only solution is $A=B=0$ and $\lambda<0$ cannot be an eigenvalue.
- If $\lambda=0$. The general solution of the DE is $y(x)=A+B \ln x$ and $y^{\prime}(x)=B / x$. The condition $y^{\prime}(1)=0$ and $y^{\prime}(L)=0$ imply $B=0$ and A arbitrary. Therefore $\lambda=0$ is an eigenvalue with eigenfunction $y_{0}(x)=1$.
- If $\lambda>0$, set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the DE is $y(x)=$ $A \cos (\nu \ln x)+B \sin (\nu \ln x)$ and

$$
y^{\prime}(x)=\frac{\nu}{x}[-A \sin (\nu \ln x)+B \cos (\nu \ln x)] .
$$

The condition $y^{\prime}(1)=0$ gives $B=0$. Then $y^{\prime}(L)=0$ implies $\frac{\nu A}{L} \sin (\nu \ln L)=0$. To obtain y nontrivial, we need $A \neq 0$ and then $\sin (\nu \ln L)=0$. Therefore $\nu \ln L=n \pi$ with $n \in \mathbb{Z}^{+}$. In this case the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\nu_{n}^{2}=\left(\frac{n \pi}{\ln L}\right)^{2}, \quad y_{n}(x)=\cos \left(\nu_{n} \ln x\right)=\cos \left(n \pi \frac{\ln x}{\ln L}\right), \quad n \in \mathbb{Z}^{+}
$$

(4) The norms of the eigenfunctions are

$$
\left\|y_{0}\right\|^{2}=\left\langle y_{0}, y_{0}\right\rangle_{r} \int_{1}^{L} \frac{d x}{x}=\ln L
$$

For $n \geq 1$

$$
\left\|y_{n}\right\|^{2}=\left\langle y_{n}, y_{n}\right\rangle_{r}=\int_{1}^{L} \cos ^{2}\left(\nu_{n} \ln x\right) \frac{d x}{x}=\int_{1}^{L} \cos ^{2}\left(n \pi \frac{\ln x}{\ln L}\right) \frac{d x}{x} .
$$

To compute the integral, we use the substitution $t=\ln x$ so that $d t=\frac{d x}{x}$ and obtain

$$
\left\|y_{n}\right\|^{2}=\int_{0}^{\ln L} \cos ^{2}\left(\frac{n \pi}{\ln L} t\right) d t=\frac{\ln L}{2}
$$

- Expansion of $f(x)=1$ in y_{n} 's: Since $y_{0}(x)=1$ is already an element of the orthogonal basis then we have $1=c_{0}+\sum_{n=1}^{\infty} c_{n} y_{n}(x)$ with $c_{0}=1$ and $c_{n}=0$ for $n \geq 1$.
- Expansion of $g(x)=x$ in y_{n} 's: We have $x=c_{0}+\sum_{n=1}^{\infty} c_{n} y_{n}(x)$ with

$$
c_{0}=\frac{\left\langle x, y_{0}\right\rangle_{r}}{\left\|y_{0}\right\|^{2}}=\frac{1}{\ln L}\left\langle x, y_{0}\right\rangle_{r}=\frac{2}{\ln L} \int_{1}^{L} d x=\frac{L-1}{\ln L}
$$

and for $n \geq 1$

$$
\begin{aligned}
c_{n} & =\frac{\left\langle x, y_{n}\right\rangle_{r}}{\left\|y_{n}\right\|^{2}}=\frac{2}{\ln L}\left\langle x, y_{n}\right\rangle_{r}=\frac{2}{\ln L} \int_{1}^{L} x \cos \left(\nu_{n} \ln x\right) \frac{d x}{x} \\
& =\frac{2}{\ln L} \int_{0}^{\ln L} \mathrm{e}^{t} \cos \left(\frac{n \pi}{\ln L} t\right) d t
\end{aligned}
$$

Since $\int \mathrm{e}^{t} \cos (a t) d t=\frac{\mathrm{e}^{t}[\cos (a t)+a \sin (a t)]}{1+a^{2}}+C$, then

$$
c_{n}=\frac{2 L}{\ln L} \frac{(-1)^{n}-1}{1+\nu_{n}^{2}}
$$

We have

$$
x=\frac{L-1}{\ln L}+\frac{2 L}{\ln L} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{1+\nu_{n}^{2}} \cos \left(\nu_{n} \ln x\right) .
$$

Exercise 8. Solve the BVP

$$
\begin{array}{ll}
u_{t}=u_{x x} & 0<x<\pi, \quad t>0, \\
u_{x}(0, t)=0 & t>0 \\
u(\pi, t)=u_{x}(\pi, t) & t>0 \\
u(x, 0)=1 & 0<x<\pi
\end{array}
$$

We proceed by finding solutions with separated variables $u(x, t)=X(x) T(t)$ of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X^{\prime}(0)=0, \quad X(\pi)=X^{\prime}(\pi)
\end{array}, \quad T^{\prime}(t)+\lambda T(t)=0\right.
$$

To find the eigenvalues and eigenfunctions of the X-problem, we consider 3 cases

- Case $\lambda=-\nu^{2}$ with $\nu>0$. In this case the general solution of the ODE is $X(x)=$ $A \mathrm{e}^{\nu x}+B \mathrm{e}^{-\nu x}$ and $X^{\prime}(x)=\nu A \mathrm{e}^{\nu x}-\nu B \mathrm{e}^{-\nu x}$. The condition $X^{\prime}(0)=0$ leads to $A-B=0$ (or $A=B$) and then the condition $X(\pi)=X^{\prime}(\pi)$ leads to $A\left(\mathrm{e}^{\nu \pi}+\mathrm{e}^{-\nu \pi}\right)=A \nu\left(\mathrm{e}^{\nu \pi}-\mathrm{e}^{-\nu \pi}\right)$ if $A \neq 0$, then ν must satisfy $\left(\mathrm{e}^{\nu \pi}+\mathrm{e}^{-\nu \pi}\right)=\nu\left(\mathrm{e}^{\nu \pi}-\mathrm{e}^{-\nu \pi}\right)$ or equivalently $\mathrm{e}^{2 \pi \nu}=\frac{\nu+1}{\nu-1}$. This equation has a unique positive solution $\nu_{0} \in(1,2)$ (see figure) Hence $\lambda_{0}=-\nu_{0}^{2}$ is

Figure 1. Positive solutions of $\mathrm{e}^{2 \pi \nu}=\frac{\nu+1}{\nu-1}$
an eigenvalue with corresponding eigenfunction $X_{0}(x)=\cosh \left(\nu_{0} x\right)$.

- Case $\lambda=0$. It is easily verified that 0 is not an eigenvalue.
- Case $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the ODE is $X(x)=A \cos (\nu x)+$ $B \sin (\nu x)$. The condition $X^{\prime}(0)=0$ implies $B=0$. Then the condition $X(\pi)=X^{\prime}(\pi)=$ 0 leads to $A \cos (\nu \pi)=-A \nu \sin (\nu \pi))=0$. For $A \neq 0, \nu$ needs to satisfy $\tan (\nu \pi)=\frac{-1}{\nu}$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^{+}$, the equation has a unique solution ν_{n} in the interval $\left(n-\frac{1}{2}, n\right)$ (see figure). The eigenvalues and eigenfunctions of the X-problem are:

$$
\lambda_{n}=\nu_{n}^{2}, \quad \text { with } \quad \nu_{n} \in\left(n-\frac{1}{2}, \quad n\right) \quad \tan \left(\nu_{n} \pi\right)=-\frac{1}{\nu_{n}}, \quad \text { and } \quad X_{n}(x)=\cos \left(\nu_{n} x\right) .
$$

The corresponding solutions of the T-problem are:

$$
\begin{aligned}
& \text { For } \quad \lambda_{0}=-\nu_{0}^{2}, \quad T_{0}(t)=\mathrm{e}^{\nu_{0}^{2} t} ; \\
& \text { For } \quad \lambda_{n}=\nu_{n}^{2}, \quad T_{n}(t)=\mathrm{e}^{-\nu_{n}^{2} t}, \quad n \in \mathbb{Z}^{+} .
\end{aligned}
$$

The solutions with separated variables of the homogeneous part of the BVP are

$$
\mathrm{e}^{\nu_{0}^{2} t} \cosh \left(\nu_{0} x\right), \quad \mathrm{e}^{-\nu_{n}^{2} t} \cos \left(\nu_{n} x\right), \quad n \in \mathbb{Z}^{+} .
$$

The series representation of the general solution of the HP is

$$
u(x, t)=c_{0} \mathrm{e}^{\nu_{0}^{2} t} \cosh \left(\nu_{0} x\right)+\sum_{n=1}^{\infty} c_{n} \mathrm{e}^{-\nu_{n}^{2} t} \cos \left(\nu_{n} x\right)
$$

Figure 2. Positive solutions of $\tan (\nu \pi)=-\frac{1}{\nu}$
In order for u to satisfy the completed BVP, we need to have

$$
u(x, 0)=1=c_{0} \cosh \left(\nu_{0} x\right)+\sum_{n=1}^{\infty} c_{n} \cos \left(\nu_{n} x\right)
$$

The series is the generalized Fourier expansion of $\sin x$ in eigenfunctions of the X-problem. Thus

$$
c_{0}=\frac{\left\langle 1, \cosh \left(\nu_{0} x\right)\right\rangle}{\left\|\cosh \left(\nu_{0} x\right)\right\|^{2}} \quad \text { and } \quad c_{n}=\frac{\left\langle 1, \cos \left(\nu_{n} x\right)\right\rangle}{\left\|\cos \left(\nu_{n} x\right)\right\|^{2}} \quad \text { for } n \geq 1
$$

We have

$$
\begin{aligned}
\left\|\cosh \left(\nu_{0} x\right)\right\|^{2} & =\int_{0}^{\pi} \cosh \left(\nu_{0} x\right) d x=\frac{1}{2} \int_{0}^{\pi}\left(1+\cosh \left(2 \nu_{0} x\right)\right) d x \\
& =\frac{1}{2}\left(\pi+\frac{\sinh \left(2 \nu_{0} \pi\right)}{2 \nu_{0}}\right)=\frac{2 \pi \nu_{0}+\sinh ^{2}\left(\nu_{0} \pi\right)}{4 \nu_{0}} \\
\left\|\cos \left(\nu_{n} x\right)\right\|^{2} & =\int_{0}^{\pi} \cos ^{2}\left(\nu_{n} x\right) d x=\frac{1}{2} \int_{0}^{\pi}\left(1+\cos \left(2 \nu_{n} x\right)\right) d x \\
& =\frac{1}{2}\left(\pi+\frac{\sin \left(2 \nu_{n} \pi\right)}{2 \nu_{n}}\right)=\frac{\pi-\sin ^{2}\left(\nu_{n} \pi\right)}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle 1, \cosh \left(\nu_{0} x\right)\right\rangle & =\int_{0}^{\pi} \cosh \left(\nu_{0} x\right) d x=\frac{\sinh \left(\nu_{0} \pi\right)}{\nu_{0}} \\
\left\langle 1, \cos \left(\nu_{n} x\right)\right\rangle & =\int_{0}^{\pi} \cos \left(\nu_{n} x\right) d x=\frac{\sinh \left(\nu_{n} \pi\right)}{\nu_{n}}
\end{aligned}
$$

Hence

$$
c_{0}=\frac{4 \sinh \left(\nu_{0} \pi\right)}{2 \pi \nu_{0}+\sinh \left(2 \nu_{0} \pi\right)} \text { and } c_{n}=\frac{2 \sin \left(\nu_{n} x\right)}{\nu_{n}\left(\pi-\sin ^{2}\left(\nu_{n} \pi\right)\right)}
$$

and the solution of the BVP is

$$
u(x, t)=\frac{4 \sinh \left(\nu_{0} \pi\right)}{2 \pi \nu_{0}+\sinh \left(2 \nu_{0} \pi\right)} \mathrm{e}^{\nu_{0}^{2} t} \cosh \left(\nu_{0} x\right)+\sum_{n=1}^{\infty} \frac{2 \sin \left(\nu_{n} x\right)}{\nu_{n}\left(\pi-\sin ^{2}\left(\nu_{n} \pi\right)\right)} \mathrm{e}^{-\nu_{n}^{2} t} \cos \left(\nu_{n} x\right) .
$$

Exercise 10. Solve the BVP

$$
\begin{array}{ll}
u_{t t}=c^{2} u_{x x} & 0<x<\pi, \quad t>0 \\
u(0, t)=0 & t>0 \\
u(\pi, t)-u_{x}(\pi, t)=0 & t>0 \\
u(x, 0)=0 & 0<x<\pi \\
u_{t}(x, 0)=f(x) & 0<x<\pi
\end{array}
$$

where

$$
f(x)= \begin{cases}0 & \text { if } 0<x<(\pi / 2) \\ 1 & \text { if }(\pi / 2)<x<\pi\end{cases}
$$

We proceed by finding solutions with separated variables $u(x, t)=X(x) T(t)$ of the homogeneous part. This leads to the following ODE problems for X and T, where λ is the separation constant:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0, \quad X(\pi)=X^{\prime}(\pi)
\end{array}, \quad\left\{\begin{array}{l}
T^{\prime \prime}(t)+c^{2} \lambda T(t)=0 \\
T(0)=0
\end{array}\right.\right.
$$

To find the eigenvalues of the X-problem, we consider three cases.

- $\lambda<0$. Set $\lambda=-\mu^{2}$ with $\mu>0$. In this case the general solution of the ODE is $X(x)=A \cosh (\mu x)+B \sinh (\mu x)$. The condition $X(0)=0$ implies $A=0$, then the second condition leads to $B \sinh (\mu \pi)=B \mu \cosh (\mu \pi)$. For $B \neq 0$, the parameter μ must satisfy $\sinh (\mu \pi)=\mu \cosh (\mu \pi)$ or equivalently $\mathrm{e}^{2 \mu \pi}=\frac{1+\mu}{1-\mu}$. This equation has a unique positive solution μ_{0} with $\mu_{0} \in(0,1)$. In fact $\mu_{0} \approx 0.996$. Hence $\lambda_{0}=-\mu_{0}^{2}$ is an eigenvalue with corresponding eigenfunction $X_{0}(x)=\sinh \left(\mu_{0} x\right)$.
- It can be verified that $\lambda=0$ is not an eigenvalue.
- $\lambda>0$. Set $\lambda=\nu^{2}$ with $\nu>0$. The general solution of the ODE is $X(x)=$ $A \cos (\nu x)+B \sin (\nu x)$. The condition $X(0)=0$ implies $A=0$. Then the condition $X(\pi)=X^{\prime}(\pi)$ leads to $B \sin (\nu \pi)=B \nu \cos (\nu \pi)$. For $B \neq 0, \quad \nu$ needs to satisfy $\sin (\nu \pi)=\nu \cos (\nu \pi)$ or $\tan (\nu \pi)=\nu$. This equation has infinitely many solutions, for every $n \in \mathbb{Z}^{+}$, the equation has a unique solution ν_{n} in the interval $\left(n, \frac{2 n+1}{2}\right)$. The eigenvalues and eigenfunctions of the X-problem are $\lambda_{n}=\nu_{n}^{2}$ and the corresponding eigenfunction $X_{n}(x)=\sin \left(\nu_{n} x\right)$.
For the negative eigenvalue $\lambda_{0}=-\mu_{0}^{2}$, the corresponding T-equation becomes $T^{\prime \prime}-c^{2} \mu_{0}^{2} T=0$ with general solution $T(t)=A \cosh \left(c \mu_{0} t\right)+B \sinh \left(c \mu_{0} t\right)$. The condition $T(0)=0$ implies $A=0$. The solution of HP of the BVP with separated variables is

$$
u_{0}(x, t)=\sinh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)
$$

For the positive eigenvalues $\lambda_{n}=\nu_{n}^{2}$, the corresponding T-equation becomes $T^{\prime \prime}+c^{2} \nu_{n}^{2} T=0$ with general solution $T(t)=A \cos \left(c \nu_{n} t\right)+B \sin \left(c \nu_{n} t\right)$. The condition $T(0)=0$ implies $A=0$. The solution of HP of the BVP with separated variables is

$$
u_{n}(x, t)=\sin \left(c \nu_{n} t\right) \sin \left(\nu_{n} x\right)
$$

The series representation of the general solution of HP is therefore

$$
u(x, t)=c_{0} \sinh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)+\sum_{n=1}^{\infty} c_{n} \sin \left(c \nu_{n} t\right) \sin \left(\nu_{n} x\right) .
$$

Now we use the nonhomogeneous condition to find the constants c_{n} 's so that u solves the complete BVP.

$$
u_{t}(x, 0)=f(x)=\left(c \mu_{0}\right) c_{0} \sinh \left(\mu_{0} x\right)+\sum_{n=1}^{\infty}\left(c \mu_{n}\right) c_{n} \sin \left(\nu_{n} x\right)
$$

Therefore

$$
\left(c \mu_{0}\right) c_{0}=\frac{\left\langle f(x), \sinh \left(\mu_{0} x\right)\right\rangle}{\left\|\sinh \left(\mu_{0} x\right)\right\|^{2}} \quad \text { and } \quad\left(c \mu_{n}\right) c_{n}=\frac{\left\langle f(x), \sin \left(\nu_{n} x\right)\right\rangle}{\left\|\sin \left(\nu_{n} x\right)\right\|^{2}}
$$

We have

$$
\begin{aligned}
\left\|\sinh \left(\mu_{0} x\right)\right\|^{2} & =\int_{0}^{\pi} \sinh \left(\mu_{0} x\right)^{2} d x=\frac{1}{2} \int_{0}^{\pi}\left[\cosh \left(2 \mu_{0} x\right)-1\right] d x \\
& =\frac{\sinh \left(2 \mu_{0} \pi\right)}{4 \mu_{0}}-\frac{\pi}{2}=\frac{\cosh ^{2}\left(\mu_{0} \pi\right)-\pi}{2} ; \\
\left\|\sin \left(\nu_{n} x\right)\right\|^{2} & =\int_{0}^{\pi} \sin \left(\nu_{n} x\right)^{2} d x=\frac{1}{2} \int_{0}^{\pi}\left[1-\cos \left(2 \nu_{n} x\right)\right] d x \\
& =\frac{\pi}{2}-\frac{\sin \left(2 \nu_{n} \pi\right)}{4 \nu_{n}}=\frac{\pi-\cos ^{2}\left(\nu_{n} \pi\right)}{2} ; \\
\left\langle f(x), \sinh \left(\mu_{0} x\right)\right\rangle & =\int_{\pi / 2}^{\pi} \sinh \left(\mu_{0} x\right) d x=\frac{\cosh \left(\mu_{0} \pi\right)-\cosh \left(\mu_{0} \pi / 2\right)}{\mu_{0}} \\
\left\langle f(x), \sin \left(\mu_{n} x\right)\right\rangle & =\int_{\pi / 2}^{\pi} \sin \left(\mu_{n} x\right) d x=\frac{\cos \left(\mu_{n} \pi / 2\right)-\cos \left(\mu_{n} \pi\right)}{\mu_{n}}
\end{aligned}
$$

Hence

$$
c_{0}=\frac{\cosh ^{2}\left(\mu_{0} \pi\right)-\pi}{2 c\left(\cosh \left(\mu_{0} \pi\right)-\cosh \left(\mu_{0} \pi / 2\right)\right)} \quad \text { and } \quad c_{n}=\frac{2\left(\cos \left(\mu_{n} \pi / 2\right)-\cos \left(\mu_{n} \pi\right)\right)}{c \mu_{n}^{2}\left(\pi-\cos ^{2}\left(\mu_{n} \pi\right)\right)}
$$

The solution of the BVP is:
$u(x, t)=\frac{\left(\cosh ^{2}\left(\mu_{0} \pi\right)-\pi\right) \sinh \left(c \mu_{0} t\right) \sinh \left(\mu_{0} x\right)}{2 c\left(\cosh \left(\mu_{0} \pi\right)-\cosh \left(\mu_{0} \pi / 2\right)\right)}+\sum_{n=1}^{\infty} \frac{2\left(\cos \left(\mu_{n} \pi / 2\right)-\cos \left(\mu_{n} \pi\right)\right) \sin \left(c \mu_{n} t\right) \sin \left(\mu_{n} x\right)}{c \mu_{n}^{2}\left(\pi-\cos ^{2}\left(\mu_{n} \pi\right)\right)}$.

Exercises from LN 10

Exercise 2.

$$
\begin{array}{ll}
u_{t}=u_{x x}+\mathrm{e}^{-x} & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=0 & 0<x<\pi
\end{array}
$$

We use the eigenfunctions expansion of the SL-problem $X^{\prime \prime}+\lambda X=0, X(0)=X(\pi)=0$. That is, seek $u(x, t)$ as

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)
$$

where $c_{n}(t)$ are functions of t that need to be determined. Since Fourier sine series of e^{-x} over $\left[\begin{array}{ll}0, & \pi\end{array}\right]$ is

$$
\mathrm{e}^{-x}=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n\left(1+(-1)^{n} \mathrm{e}^{-\pi}\right)}{1+n^{2}} \sin (n x)
$$

the PDE $u_{t}=u_{x x}+\mathrm{e}^{-x}$ can be rewritten as

$$
\sum_{n=1}^{\infty} c_{n}^{\prime}(t) \sin (n x)=-\sum_{n=1}^{\infty} n^{2} c_{n}(t) \sin (n x)+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n\left(1+(-1)^{n} \mathrm{e}^{-\pi}\right)}{1+n^{2}} \sin (n x)
$$

The initial condition $u(x, 0)=0$ implies that $c_{n}(0)=0$ for all $n \geq 1$. It follows that for $n \geq 1$, the function $c_{n}(t)$ satisfies the first order linear ODE problem

$$
c_{n}^{\prime}(t)+n^{2} c_{n}(t)=\frac{2 n\left(1+(-1)^{n} \mathrm{e}^{-\pi}\right)}{\pi\left(1+n^{2}\right)}, \quad c_{n}(0)=0
$$

We use the method of undetermined coefficients to find

$$
c_{n}(t)=\frac{2\left(1+(-1)^{n} \mathrm{e}^{-\pi}\right)}{n \pi\left(1+n^{2}\right)}\left(1-\mathrm{e}^{-n^{2} t}\right) .
$$

Therefore the solution of the BVP is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2\left(1+(-1)^{n} \mathrm{e}^{-\pi}\right)}{n \pi\left(1+n^{2}\right)}\left(1-\mathrm{e}^{-n^{2} t}\right) \sin (n x)
$$

Exercise 4.

$$
\begin{array}{ll}
u_{t}=u_{x x}+2 t & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=100 & t>0 \\
u(x, 0)=0 & 0<x<\pi
\end{array}
$$

First seek a steady state function $s(x)$ that satisfies the end points conditions. That is $s^{\prime \prime}(x)=0$, $s(0)=0$ and $s(\pi)=100$. We find $s(x)=\frac{100 x}{\pi}$.

Now let $v(x, t)=u(x, t)-s(x)$. In order for u to solve the BVP, the function v must solve

$$
\begin{array}{ll}
v_{t}=v_{x x}+2 t & 0<x<\pi, t>0 \\
v(0, t)=0, v(\pi, t)=0 & t>0 \\
v(x, 0)=-s(x)=-\frac{100 x}{\pi} & 0<x<\pi
\end{array}
$$

Seek a solution v in the form $v(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)$ where the functions $c_{n}(t)$ are to be determined. The Fourier sine series of $2 t$ and $-\frac{100 x}{\pi}$ are

$$
2 t=\frac{4 t}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin (n x) \quad \text { and } \quad-\frac{100 x}{\pi}=200 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin (n x)
$$

For such v, the BVP can be written as

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n}^{\prime}(t) \sin (n x)=-\sum_{n=1}^{\infty} n^{2} c_{n}(t) \sin (n x)+\frac{4 t}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin (n x) \\
& \sum_{n=1}^{\infty} c_{n}(0) \sin (n x)=200 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin (n x)
\end{aligned}
$$

The function $c_{n}(t)$ satisfies the initial value problem

$$
c_{n}^{\prime}(t)+n^{2} c_{n}(t)=\frac{4\left(1-(-1)^{n}\right) t}{n \pi}, \quad c_{n}(0)=\frac{200(-1)^{n}}{n}
$$

The UC method applied to the DE $y^{\prime}(t)+n^{2} y(t)=\frac{4\left(1-(-1)^{n}\right) t}{n \pi}$ gives the general solution as

$$
y=K \mathrm{e}^{-n^{2} t}+\frac{4\left(1-(-1)^{n}\right)}{n^{3} \pi}\left(t-\frac{1}{n^{2}}\right) .
$$

The solution that satisfies the initial condition is obtained for

$$
K=\frac{4\left(1-(-1)^{n}\right)}{\pi n^{5}}+\frac{200(-1)^{n}}{n}
$$

The solution of the original BVP is

$$
u(x, t)=s(x)+v(x, t)=\frac{100 x}{\pi}+\sum_{n=1}^{\infty} c_{n}(t) \sin (n x) .
$$

Exercise 6.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+\sin (2 x) & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0 & t>0 \\
u(x, 0)=\sin x, u_{t}(x, 0)=\sin (3 x) & 0<x<\pi
\end{array}
$$

Seek a solution in the form $u(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)$ with $c_{n}(t)$ function of t to be determined. For such a function $u(x, t)$ the BVP becomes

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(c_{n}^{\prime \prime}(t)+n^{2} c_{n}(t)\right) \sin (n x)=\sin (2 x) \\
& \sum_{n=1}^{\infty} c_{n}(0) \sin (n x)=\sin x \\
& \sum_{n=1}^{\infty} c_{n}^{\prime}(0) \sin (n x)=\sin (3 x)
\end{aligned}
$$

This implies that for $n \neq 1,2,3$ the function $c_{n}(t)$ satisfies

$$
c_{n}^{\prime \prime}(t)+n^{2} c_{n}(t)=0, \quad c_{n}\left(0=c_{n}^{\prime}(0)=0\right.
$$

Hence $c_{n}(t)=0$ for $n \neq 1,2,3$.

- For $n=1$ we have

$$
c_{1}^{\prime \prime}(t)+c_{1}(t)=0, \quad c_{1}(0)=1, \quad c_{1}^{\prime}(0)=0
$$

with solution $c_{1}(t)=\cos t$.

- For $n=2$ we have

$$
c_{2}^{\prime \prime}(t)+4 c_{2}(t)=1, \quad c_{2}(0)=0, \quad c_{2}^{\prime}(0)=0
$$

with solution $c_{2}(t)=\frac{1-\cos (2 t)}{4}$.

- For $n=3$ we have

$$
c_{3}^{\prime \prime}(t)+9 c_{3}(t)=0, \quad c_{3}(0)=0, \quad c_{3}^{\prime}(0)=1
$$

with solution $c_{3}(t)=\frac{\sin (3 t)}{3}$.
The solution of the BVP is

$$
u(x, t)=\cos t \sin x+\frac{1-\cos (2 t)}{4} \sin 2 x+\frac{\sin (3 t)}{3} \sin (3 x) .
$$

Exercise 10. Let $f(x, y)=1$ on the square $[0,1]^{2}$. Find

1. The Fourier cosine-cosine series of f.
2. The Fourier cosine-sine series of f.
3. The Fourier sine-sine series of f.
4. The Fourier sine-cosine series of f.
(1) Fourier cosine-cosine series: Since the function 1 is already an element of the basis, then the Fourier cosine-cosine series of 1 is just the function 1.
(2) Fourier cosine-sine series:

$$
1=\frac{1}{2} \sum_{m=1}^{\infty} B_{0, m} \sin (m y)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cos (n x) \sin (m y)
$$

with

$$
B_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \cos (n x) \sin (m y) d x d y
$$

We have

$$
B_{0 m}=\frac{4}{\pi^{2}}\left(\int_{0}^{\pi} d x\right)\left(\int_{0}^{\pi} \sin (m y) d y\right)=\frac{2\left(1-(-1)^{m}\right)}{m \pi}
$$

and for $n, m \geq 1, B_{n, m}=0$. Hence for $0 \leq x \leq 1,0 \leq y \leq 1$, we have

$$
1=\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1-(-1)^{m}}{m} \sin (m \pi y)
$$

(3) Fourier sine-sine series:

$$
1=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \sin (n \pi x) \sin (m \pi y)
$$

with

$$
\begin{gathered}
B_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \sin (n \pi x) \sin (m \pi y) d x d y \\
B_{n, m}=\frac{4\left(1-(-1)^{n}\right)\left(1-(-1)^{m}\right)}{\pi^{2} n m} .
\end{gathered}
$$

Hence for $0 \leq x \leq 1, \quad 0 \leq y \leq 1$, we have

$$
1=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\left[1-(-1)^{n}\right]\left[1-(-1)^{m}\right]}{n m} \sin (n \pi x) \sin (m \pi y)
$$

(4) Fourier sine-cosine series: For $0 \leq x \leq 1,0 \leq y \leq 1$, we have

$$
1=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin (n \pi x)
$$

Exercise 14.

$$
\begin{array}{ll}
u_{t t}=u_{x x}+u_{y y}, & 0<x<\pi, 0<y<\pi, t>0 \\
u(0, y, t)=u(\pi, y, t)=0, & 0<y<\pi, t>0 \\
u(x, 0, t)=u(x, \pi, t)=0, & 0<x<\pi, t>0 \\
u(x, y, 0)=0.05 x(\pi-x) y(\pi-y) & 0<x<\pi, 0<y<\pi \\
u_{t}(x, y, 0)=0 & 0<x<\pi, 0<y<\pi
\end{array}
$$

If $u(x, y, t)=X(x) Y(y) T(t)$ is a nontrivial solution the homogeneous part of the BVP, then the functions X, Y, and T solve the ODE problems:

$$
\left\{\begin{array} { l }
{ X ^ { \prime \prime } (x) + \alpha X (x) = 0 , } \\
{ X (0) = 0 , X (\pi) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ Y ^ { \prime \prime } (y) + \beta Y (y) = 0 , } \\
{ Y (0) = 0 , Y (\pi) = 0 }
\end{array} \quad \left\{\begin{array}{l}
T^{\prime \prime}(t)+\lambda T(t)=0 \\
T^{\prime}(0)=0
\end{array}\right.\right.\right.
$$

where α, β, λ are separation constants and $\lambda=\alpha+\beta$.
The eigenvalues and eigenfunctions of the X-problem are:

$$
\alpha_{n}=n^{2}, \quad X_{n}(x)=\sin (n x), \quad n=1,2,3, \cdots
$$

The eigenvalues and eigenfunctions of the Y-problem are:

$$
\beta_{m}=m^{2}, \quad Y_{m}(y)=\sin (m y), \quad m=1,2,3, \cdots
$$

For each pair of integers n, m, we have $\lambda_{n m}=\omega_{n m}^{2}$ with $\omega_{n m}=\sqrt{n^{2}+m^{2}}$ and an independent solution of the T-problem is $T_{n m}(t)=\cos \left(\omega_{n m} t\right)$. The solutions with separated variables of the homogeneous part are

$$
\cos \left(\omega_{n m} t\right) \sin (n x) \sin (m y)
$$

The series representation of the general solution is

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n m} \cos \left(\omega_{n m} t\right) \sin (n x) \sin (m y)
$$

To find the constants $C_{n m}$ so that u solves the complete BVP we use the nonhomogeneous condition and then evaluate at $t=0$.

$$
u_{t}(x, y, 0)=0.05 x(\pi-x) y(\pi-y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \omega_{n m} C_{n m} \sin (n x) \sin (m y)
$$

The last series is therefore the Fourier sine-sine series of the function $0.05 x(\pi-x) y(\pi-y)$. We have

$$
C_{n m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} 0.05 x(\pi-x) y(\pi-y) \sin (n x) \sin (m y) d x d y
$$

An integration by parts gives

$$
C_{n m}=\frac{0.8}{\pi^{2}} \frac{\left[1-(-1)^{n}\right]\left[1-(-1)^{m}\right]}{n^{3} m^{3}}
$$

Therefore the solution of the BVP is

$$
u(x, y, t)=\frac{0.8}{\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\left[1-(-1)^{n}\right]\left[1-(-1)^{m}\right]}{n^{3} m^{3}} \cos \left(\omega_{n m} t\right) \sin (n x) \sin (m y)
$$

