Fall 2022 - Real Analysis
 Extra homework about l^{p}-spaces

The aim here is to describe some properties the l^{p}-spaces.
For $0<p<\infty$, the space l^{p} consists of all infinite vectors (or sequences) $x=\left(x_{1}, x_{2}, \cdots\right)=\left(x_{j}\right)_{j=1}^{\infty}$ with $x_{j} \in \mathbb{R}$ such that $\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}<\infty$. For $p=\infty$, the space l^{∞} consists of all infinite vectors (or sequences) $x=\left(x_{1}, x_{2}, \cdots\right)=\left(x_{j}\right)_{j=1}^{\infty}$ with $x_{j} \in \mathbb{R}$ such that $\sup _{j \in \mathbb{N}}\left|x_{j}\right|<\infty$. For $0<p \leq \infty$ define $\|x\|_{p}$ by

$$
\|x\|_{p}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}\right)^{1 / p} \quad \text { if } 0<p<\infty \quad \text { and } \quad\|x\|_{\infty}=\sup _{j \in \mathbb{N}}\left|x_{j}\right|
$$

Exercise 1. Let $x=(1 / j)_{j=1}^{\infty}$ and $y=(1)_{j=1}^{\infty}$

- Find all $p \in(0, \infty]$ such that $x \in l^{p}$. Same question for y.
- Show that if $0<p<q \leq \infty$, then $l^{p} \subsetneq l^{q}$ and show that $\|x\|_{q} \leq\|x\|_{p}$ for all $x \in L^{p}$.

Exercise 2. For $0<p<\infty$ prove the following

- If $a, b \geq 0$, then $(a+b)^{p} \leq 2^{p}\left(a^{p}+b^{p}\right)$
- If $x, y \in l^{p}$, show that $\|x+y\|_{p}^{p} \leq 2^{p}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)$
- Prove that l^{p} is a linear (or vector) space. That is, for every $x, y \in L^{p}$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha x+\beta y \in l^{p}$.

The Hölder conjugate of $1 \leq p \leq \infty$ is the number $q, 1 \leq q \leq \infty$, such that $\frac{1}{p}+\frac{1}{q}=1$ (with the understanding that for $p=1 q=\infty)$. That is $q=\frac{p}{p-1}$.
Exercise 3. (Hölder inequality for $l^{p}, p \geq 1$)

- Let $0<\sigma<1$. Show that for $t \geq 0$ we have $t^{\sigma} \leq \sigma t+(1-\sigma)$ and the equality holds iff $t=1$.
- Let (p, q) be a Hölder pair of conjugate numbers with $1<p<\infty$ and let $a, b \geq 0$. Show that $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$ and the equality holds iff $b=a^{p-1}$ (Hint: apply the previous result to $t=\frac{a^{p}}{b^{q}}$ and $\sigma=1 / p$.)
- Let $1 \leq p \leq \infty$ and q be the Hölder conjugate of p. For $x=\left(x_{j}\right)_{j=1}^{\infty} \in l^{p}$ and $y=\left(y_{j}\right)_{j=1}^{\infty} \in l^{q}$, show that $x y=\left(x_{j} y_{j}\right)_{j=1}^{\infty} \in l^{1}$ and

$$
\|x y\|_{1} \leq\|x\|_{p}\|y\|_{q}
$$

Hint: First consider the case $p=1, q=\infty$. For the case $p>1, x \neq 0$ and $y \neq 0$, use the previous question to the unit vectors $u=\frac{x}{\|x\|_{p}} \in l^{p}$ and $v=\frac{y}{\|y\|_{q}} \in l^{q}$.
Exercise 4. (Minkowski inequality for $l^{p}, p \geq 1$)

- Show that if $x, y \in l^{\infty}$, then $\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}$.
- Show that if $x, y \in l^{1}$, then $\|x+y\|_{1} \leq\|x\|_{1}+\|y\|_{1}$.
- Show that if $x, y \in l^{p}$, with $1<p<\infty$, then $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$. Hint: You can use the decomposition $\sum_{j}\left|x_{j}+y_{j}\right|^{p} \leq A+B$ with $A=\sum_{j}\left|x_{j}\right|\left|x_{j}+y_{j}\right|^{p-1}$ and $B=\sum_{j}\left|y_{j}\right|\left|x_{j}+y_{j}\right|^{p-1}$. You can estimate A by using the Hölder inequality with $x \in l^{p}$ and $z=\left(\left|x_{j}+y_{j}\right|^{p-1}\right)_{j}$ in l^{q}.
- Deduce that for $1 \leq p \leq \infty,\left(l^{p},\|.\|_{p}\right)$ is a normed vector space.

Exercise 5. Let $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ be a sequence in l^{p} with $1 \leq p \leq \infty$. Thus for $n \in \mathbb{N}, x^{n}=\left(x_{1}^{n}, x_{2}^{n}, \cdots\right)=\left(x_{j}^{n}\right)_{j=1}^{\infty}$. The sequence x^{n} is said to converge in l^{p} if there exists $x=\left(x_{j}\right)_{j=1}^{\infty} \in l^{p}$ such that $\lim _{n \rightarrow \infty}\left\|x^{n}-x\right\|_{p}=0$.

- Show that if $x^{n} \longrightarrow x$ in l^{p}, then for every $j \in \mathbb{N}$ the sequence of real numbers $\left(x_{j}^{n}\right)_{n \in \mathbb{N}}$ converges to x_{j}.
- Consider the sequence $\left\{\delta^{n}\right\}_{n}$ in l^{p} given by $\delta_{j}^{n}=0$ if $j \neq n$ and $\delta_{n}^{n}=1$. That is, $\delta^{n}=(0, \cdots, 0,1,0,0, \cdots)$, with 1 at the n-th coordinate. Find $\lim _{n \rightarrow \infty} \delta_{j}^{n}$. Is the sequence $\left(\delta^{n}\right)_{n}$ convergent in l^{p} ?
Exercise 6. $\left(l^{\infty},\|.\|_{\infty}\right)$ is a Banach space. Let $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in l^{∞}. That is, $\forall \epsilon>0$, $\exists N \in \mathbb{N}$, such that $\left\|x^{n}-x^{m}\right\|_{\infty}<\epsilon \quad \forall n, m \geq N$.
- Show that for every $j \in \mathbb{N}$, the sequence of real numbers $\left\{x_{j}^{n}\right\}_{n}$ converges to a number $x_{j} \in \mathbb{R}$.
- Show that $x=\left\{x_{j}\right\}_{j} \in l^{\infty}$ and that $x^{n} \longrightarrow x$ in l^{∞}.

Exercise 7. Fatou's Lemma for Series. Let $u_{j}^{n} \geq 0$ for all $j, n \in \mathbb{N}$. Show that

$$
\sum_{j=1}^{\infty} \liminf _{n \rightarrow \infty} u_{j}^{n} \leq \liminf _{n \rightarrow \infty} \sum_{j=1}^{\infty} u_{j}^{n}
$$

Hint: If A and B are two subsets of \mathbb{R}, then $\inf (A)+\inf (B) \leq \inf (A+B)$.
Exercise 8. For $1 \leq p<\infty$, $\left(l^{p},\|.\|_{p}\right)$ is a Banach space. Let $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in l^{p} with $1 \leq p \leq \infty$. That is, $\forall \epsilon>0, \exists N \in \mathbb{N}$, such that $\left\|x^{n}-x^{m}\right\|_{p}<\epsilon \forall n, m \geq N$.

- Show that for every $j \in \mathbb{N}$, the sequence of real numbers $\left\{x_{j}^{n}\right\}_{n}$ converges to a number $x_{j} \in \mathbb{R}$.
- Let $x=\left\{x_{j}\right\}_{j}$. Use Fatou's Lemma for series to prove that $\left\|x-x^{n}\right\|_{p} \leq \liminf _{m \rightarrow \infty}\left\|x^{m}-x^{n}\right\|_{p}$.
- Deduce that $x \in l^{p}$ and that $x^{n} \longrightarrow x$ in l^{p}.

Exercise 8. For $0<p<1$, $\|.\|_{p}$ is not a norm in l^{p}. Let $\delta^{1}=(1,0,0, \cdots)$ and $\delta^{2}=(0,1,0,0, \cdots)$ be in l^{p} with $0<p<1$. Compute $\left\|\delta^{1}\right\|_{p},\left\|\delta^{2}\right\|_{p}$ and $\left\|\delta^{1}+\delta^{2}\right\|_{p}$. Deduce that the triangle inequality does not hold in l^{p} and that $\|x\|_{p}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}\right)^{1 / p}$ is not a norm in l^{p}.
Exercise 9. Let $0<p<1$.

- Show that $(1+t)^{p} \leq 1+t^{p}$ for all $t \geq 0$.
- Show that if $a, b \geq 0$, then $(a+b)^{p} \leq a^{p}+b^{p}$
- Deduce that if $x, y \in l^{p}$, then $\|x+y\|_{p}^{p} \leq\|x\|_{p}^{p}+\|y\|_{p}^{p}$.

Exercise 10. Metric in l^{p} for $0<p<1$. Consider the function

$$
d_{p}: l^{p} \times l^{p} \longrightarrow[0, \infty), \quad d_{p}(x, y)=\|x-y\|_{p}^{p}
$$

- Show that d_{p} is a distance function on l^{p} (i.e. $d_{p}(x, y) \geq 0, \quad d_{p}(x, y)=0$ iff $x=y$, and $d_{p}(x, y) \leq$ $d_{p}(x, z)+d_{p}(z, y)$ for all $\left.x, y, z \in l^{p}\right)$.
- Show that $\left(l^{p}, d_{p}\right)$ is a complete metric space (note that although $\left(l^{p}, d_{p}\right)$ is a complete metric space, it is not a Banach space because the metric is not induced by a norm).

Exercise 11. Convexity of the unit ball. A set C in a linear metric space X is said to be convex if for every $x, y \in C$, we have $t x+(1-t) y \in C$ for all $t \in[0,1]$.

- For $1 \leq p \leq \infty$, let $B=\left\{x \in l^{p},\|x\|_{p}<1\right\}$. Show that B is a convex set of l^{p}.
- For $0<p<1$, let $B=\left\{x \in l^{p}, d_{p}(x, 0)<1\right\}$. Show that B is not convex in l^{p}.

