Fall 2022 - Real Analysis Extra homework about l^p -spaces

The aim here is to describe some properties the l^p -spaces.

For $0 , the space <math>l^p$ consists of all infinite vectors (or sequences) $x = (x_1, x_2, \cdots) = (x_j)_{j=1}^{\infty}$ with $x_j \in \mathbb{R}$ such that $\sum_{i=1}^{\infty} |x_j|^p < \infty$. For $p = \infty$, the space l^{∞} consists of all infinite vectors (or sequences) $x = (x_1, x_2, \cdots) = (x_j)_{j=1}^{\infty}$ with $x_j \in \mathbb{R}$ such that $\sup_{j \in \mathbb{N}} |x_j| < \infty$. For $0 define <math>||x||_p$ by

$$||x||_p = \left(\sum_{j=1}^\infty |x_j|^p\right)^{1/p} \quad \text{if } 0$$

Exercise 1. Let $x = (1/j)_{j=1}^{\infty}$ and $y = (1)_{j=1}^{\infty}$

- Find all $p \in (0, \infty]$ such that $x \in l^p$. Same question for y.
- Show that if $0 , then <math>l^p \subseteq l^q$ and show that $||x||_q \le ||x||_p$ for all $x \in L^p$.

Exercise 2. For 0 prove the following

- If $a, b \ge 0$, then $(a + b)^p \le 2^p (a^p + b^p)$
- If $x, y \in l^p$, show that $||x + y||_p^p \le 2^p (||x||_p^p + ||y||_p^p)$
- Prove that l^p is a linear (or vector) space. That is, for every $x, y \in L^p$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha x + \beta y \in l^p$.

The Hölder conjugate of $1 \le p \le \infty$ is the number $q, 1 \le q \le \infty$, such that $\frac{1}{p} + \frac{1}{q} = 1$ (with the understanding that for p = 1 $q = \infty$). That is $q = \frac{p}{p-1}$.

Exercise 3. (Hölder inequality for l^p , $p \ge 1$)

- Let $0 < \sigma < 1$. Show that for $t \ge 0$ we have $t^{\sigma} \le \sigma t + (1 \sigma)$ and the equality holds iff t = 1.
- Let (p,q) be a Hölder pair of conjugate numbers with $1 and let <math>a, b \ge 0$. Show that $ab \le \frac{a^p}{p} + \frac{b^q}{q}$

and the equality holds iff $b = a^{p-1}$ (*Hint*: apply the previous result to $t = \frac{a^p}{b^q}$ and $\sigma = 1/p$.)

• Let $1 \le p \le \infty$ and q be the Hölder conjugate of p. For $x = (x_j)_{j=1}^{\infty} \in l^p$ and $y = (y_j)_{j=1}^{\infty} \in l^q$, show that $xy = (x_j y_j)_{j=1}^{\infty} \in l^1$ and

$$||xy||_1 \le ||x||_p \, ||y||_q$$
.

Hint: First consider the case p = 1, $q = \infty$. For the case p > 1, $x \neq 0$ and $y \neq 0$, use the previous question to the unit vectors $u = \frac{x}{||x||_p} \in l^p$ and $v = \frac{y}{||y||_q} \in l^q$.

Exercise 4. (Minkowski inequality for l^p , $p \ge 1$)

- Show that if $x, y \in l^{\infty}$, then $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$.
- Show that if $x, y \in l^1$, then $||x + y||_1 \le ||x||_1 + ||y||_1$.
- Show that if $x, y \in l^p$, with $1 , then <math>||x + y||_p \le ||x||_p + ||y||_p$. *Hint*: You can use the decomposition $\sum_{i} |x_j + y_j|^p \le A + B$ with $A = \sum_{i} |x_j| |x_j + y_j|^{p-1}$ and $B = \sum_{i} |y_j| |x_j + y_j|^{p-1}$. You can estimate A by using the Hölder inequality with $x \in l^p$ and $z = (|x_j + y_j|^{p-1})_j$ in l^q .

• Deduce that for $1 \le p \le \infty$, $(l^p, ||, ||_p)$ is a normed vector space.

Exercise 5. Let $\{x^n\}_{n\in\mathbb{N}}$ be a sequence in l^p with $1 \le p \le \infty$. Thus for $n \in \mathbb{N}$, $x^n = (x_1^n, x_2^n, \cdots) = (x_j^n)_{j=1}^{\infty}$. The sequence x^n is said to converge in l^p if there exists $x = (x_j)_{j=1}^{\infty} \in l^p$ such that $\lim_{n\to\infty} ||x^n - x||_p = 0$.

- Show that if $x^n \longrightarrow x$ in l^p , then for every $j \in \mathbb{N}$ the sequence of real numbers $(x_j^n)_{n \in \mathbb{N}}$ converges to x_j .
- Consider the sequence $\{\delta^n\}_n$ in l^p given by $\delta^n_j = 0$ if $j \neq n$ and $\delta^n_n = 1$. That is, $\delta^n = (0, \dots, 0, 1, 0, 0, \dots)$, with 1 at the *n*-th coordinate. Find $\lim_{n \to \infty} \delta^n_j$. Is the sequence $(\delta^n)_n$ convergent in l^p ?

Exercise 6. $(l^{\infty}, \|\cdot\|_{\infty})$ is a Banach space. Let $\{x^n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in l^{∞} . That is, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, such that $||x^n - x^m||_{\infty} < \epsilon \quad \forall n, m \ge N$.

• Show that for every $j \in \mathbb{N}$, the sequence of real numbers $\{x_j^n\}_n$ converges to a number $x_j \in \mathbb{R}$.

• Show that $x = \{x_j\}_j \in l^\infty$ and that $x^n \longrightarrow x$ in l^∞ .

Exercise 7. Fatou's Lemma for Series. Let $u_j^n \ge 0$ for all $j, n \in \mathbb{N}$. Show that

$$\sum_{j=1}^{\infty} \liminf_{n \to \infty} u_j^n \le \liminf_{n \to \infty} \sum_{j=1}^{\infty} u_j^n$$

Hint: If A and B are two subsets of \mathbb{R} , then $\inf(A) + \inf(B) \leq \inf(A + B)$.

Exercise 8. For $1 \le p < \infty$, $(l^p, ||.||_p)$ is a Banach space. Let $\{x^n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in l^p with $1 \le p \le \infty$. That is, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, such that $||x^n - x^m||_p < \epsilon \quad \forall n, m \ge N$.

- Show that for every $j \in \mathbb{N}$, the sequence of real numbers $\{x_j^n\}_n$ converges to a number $x_j \in \mathbb{R}$.
- Let $x = \{x_j\}_j$. Use Fatou's Lemma for series to prove that $||x x^n||_p \le \liminf ||x^m x^n||_p$.
- Deduce that $x \in l^p$ and that $x^n \longrightarrow x$ in l^p .

Exercise 8. For $0 , <math>||.||_p$ is not a norm in l^p . Let $\delta^1 = (1, 0, 0, \cdots)$ and $\delta^2 = (0, 1, 0, 0, \cdots)$ be in l^p with $0 . Compute <math>||\delta^1||_p$, $||\delta^2||_p$ and $||\delta^1 + \delta^2||_p$. Deduce that the triangle inequality does not hold in

$$l^p$$
 and that $||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)$ is not a norm in l^p .

Exercise 9. Let 0 .

- Show that $(1+t)^p \leq 1+t^p$ for all $t \geq 0$.
- Show that if $a, b \ge 0$, then $(a+b)^p \le a^p + b^p$
- Deduce that if $x, y \in l^p$, then $||x + y||_p^p \le ||x||_p^p + ||y||_p^p$.

Exercise 10. Metric in l^p for 0 . Consider the function

$$d_p: l^p \times l^p \longrightarrow [0, \infty), \quad d_p(x, y) = ||x - y||_p^p.$$

- Show that d_p is a distance function on l^p (i.e. $d_p(x,y) \ge 0$, $d_p(x,y) = 0$ iff x = y, and $d_p(x,y) \le d_p(x,z) + d_p(z,y)$ for all $x, y, z \in l^p$).
- Show that (l^p, d_p) is a complete metric space (note that although (l^p, d_p) is a complete metric space, it is not a Banach space because the metric is not induced by a norm).

Exercise 11. Convexity of the unit ball. A set *C* in a linear metric space *X* is said to be convex if for every $x, y \in C$, we have $tx + (1 - t)y \in C$ for all $t \in [0, 1]$.

- For $1 \le p \le \infty$, let $B = \{x \in l^p, ||x||_p < 1\}$. Show that B is a convex set of l^p .
- For $0 , let <math>B = \{x \in l^p, d_p(x, 0) < 1\}$. Show that B is not convex in l^p .