Lecture 16:

Glycolysis
Control of glycolytic pathway
Synthesis of Glucose
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Oligosaccharides digestion

Pancreatic and salivary a-amylase cleave the a-1, 4-bonds of
starch and glycogen to yield maltose and maltotriose.

Maltase and a-glucosidase complete the digestion of the di-
and trisaccharides into glucose.

The molecule remaining after amylase digestion is limit
dextrin, which is rich in a-1, 6-bonds. a-Dextrinase degrades

the limit dextran.

Sucrase hydrolyzes sucrose, whereas lactase cleaves lactose.



Why 1s glucose such a prominent fuel 1n all
life forms?

1. Glucose may have been available for
primitive  biochemical systems because it
can form under prebiotic conditions.

2. Glucose 1s the most stable hexose.

3. Glucose has a low tendency to
nonenzymatically glycosylate proteins.



Glycolysis

KSTAGE 2 Glucose
Glycolysis converts one molecule of glucose into two sl '
molecules of pyruvate with the generation of two pa—_
molecules of ATP. ¥
F-1,6-BP
Glycolysis can be thought of as occurring in two stages:
¥ ¥
1. Stage 1 traps glucose in the cell and modifies it so Y DHAP () GAP
that it can be cleaved into a pair of phosphorylated 3- ~ p—
carbon compounds. "> ks
v
2. Stage 2 oxidizes the 3-carbon compounds to pyruvate 2% v
while generating two molecules of ATP. ;:;
> ATP
\_ Pyruvate

First stage of glycolysis. The first stage of
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to ghyceraldehyde 3-phosphate.
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Metabolism of pyruvate leads to the formation of two molecules of ATP

The conversion of glucose into pyruvate generates
ATP, but for ATP synthesis to continue, NADH

must be reoxidized to NAD™.

¥
NAD" can be regenerated by further oxidation of DHAP
pyruvate to CO,, or by the formation of ethanol or
lactate from pyruvate.
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NAD™ is regenerated from the metabolism of pyruvate

The regeneration of NAD™ by processing pyruvate to ethanol 1s called alcoholic
fermentation.
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Glucose + 2P, + 2ADP+2H" —
2 ethanol + 2 CO, + 2 ATP + 2 H,O
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In lactic acid fermentation, pyruvate is reduced to lactate to regenerate NAD".
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Glucose + 2 P; + 2 ADP — 2 lactate + 2 ATP + 2 H,O

Obligate anaerobes cannot survive in the presence of O2.

There are many more fermentations than just alcoholic and lactic acid
fermentation.



Many adults are intolerant of milk because they are deficient in lactase

Lactose intolerance or hypolactasia occurs because most adults lack lactase, the
enzyme that degrades lactose.
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Northern Europeans have a mutation that prevents the decline of lactase activity
after weaning.

In lactase-deficient individuals, gut bacteria metabolize lactose, generating CH, and
H,, and disrupt water balance in the intestine.



Glycolysis in muscle is regulated to meet the need for ATP

Phosphofructokinase is the key regulator of glycolysis in mammals. The enzyme is
allosterically inhibited by ATP and allosterically stimulated by AMP.

When ATP needs are great, adenylate kinase generates ATP from 2 ADP.

AMP then becomes the signal for the low-energy state.

ADP + ADP ——= ATP + AMP
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Decarboxylation of pyruvate and Citric acid cycle takes place in mitochondria
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CITRIC ACID CYCLE

OXIDATIVE PHOSPHORYLATION
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PYRUVATE DEHYDROGENASE

The pyruvate dehydrogenase complex, a component of the
mitochondrial matrix, 1s composed of three distinct enzymes that
oxidatively decarboxylate pyruvate to form acetyl CoA.

This reaction 1s an irreversible link between glycolysis and the citric
acid cycle.

Pyruvate + CoA + NAD" —— acetyl CoA + CO;, + NADH + H”
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Oxidative phosphorylation
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