Exam \#2

October 11, 2018

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

1. (8 pts each) Differentiate the following functions and simplify your answers
(a) $f(x)=\frac{7}{\left(3-x^{2}\right)^{2}}$
(b) $g(x)=(3 x+1)^{4}(2 x-1)^{5}$
(c) $g(x)=\left(2 x^{4}-x\right)^{5}$
(d) $g(x)=\sqrt{x^{3}+2 x-21}$
2. (4 pts) Suppose the profit of manufacturing q units is $P(q)=\sqrt{q}-4$. Use marginal analysis to estimate the profit generated by selling the 17 th unit.
3. (4 pts) Suppose the profit of manufacturing q units is $P(q)=6 \sqrt{q}-1$. Estimate the change in the profit if the production is increased from $q=9$ to $q=9.5$
4. (10 pts) Sketch a function that has the following properties. On your sketch, identify any inflection point(s) and relative extrema.

- $f^{\prime}(x)<0$ when $-1<x<3$
- $f^{\prime}(x)>0$ when $x<-1$ and $x>3$
- $f^{\prime \prime}(x)<0$ when $x<2$
- $f^{\prime \prime}(x)>0$ when $x>2$

5. (18 pts) Find the intervals where the function is increasing/decreasing, concave up/down, identify the relative min/max and sketch the graph using this information. [Hint: Finding the x - and y intercepts and asymptotes might be useful.]

$$
f(x)=\frac{x^{2}}{(x+1)^{2}}
$$

6. (8 pts each) Find the intervals where the function is increasing/decreasing and concave up/down.
(a) $f(x)=2 x-\frac{8}{x}$
(b) $g(x)=x(x-4)^{5}$
7. $h(t)=\sqrt{t^{2}+4}$
8. (8 pts) At a certain factory, the total cost of manufacturing q units is $C(q)=0.3 q^{2}+q+50$ dollars. It has been determined that approximately $q(t)=t^{2}+1$ units are manufactured during the first t hours of a production run. Compute the rate at which the total manufacturing cost is changing with respect to time 1 hour after the production begins.

Use this page if you need additional space.

