MAC 1105 Pre-Class Assignment (due $5 / 22$ by $11: 59 \mathrm{pm}$):

Read sections P. 1 (the absolute values), P. 3 (Radicals), 2.2, 2.6 (sum and difference, product and quotients of functions) from the text book to prepare for next class.

Absolute Value

Absolute Value means ...

how far a number is from zero:

So the absolute value of 6 is $\mathbf{6}$, and the absolute value of -6 is also 6

$$
|a|=b
$$

We call whatever appears within the vertical bars the argument of the absolute value. Either the argument will be b, or it will be $-b$.

$$
|a|=b
$$

has the two solutions

$$
a=b, \text { or } a=-b
$$

1) What values could a have for the following equation?

$$
|a|=5
$$

2) What values could x have for the following equation?

$$
|x-2|=8
$$

Absolute value less than.

$$
|a|<3 .
$$

The values of a that are less than 3 units from 0 are:

$$
-3<a<3
$$

3) For which values of x will this inequality be true?

$$
|2 x-1|<5
$$

4) Without using a calculator, find the $\sqrt[3]{-64}$. How can you check if the answer you got is correct? (Hint: Raising the answer to a specific exponent, you should get -64)
5) Now, thinking about functions inside radicals, compare $f(x)=\sqrt{x+2}$ and $g(x)=\sqrt[3]{x+2}$. Will the domains of $f(x)$ and $g(x)$ be the same? What are their domains? If they are not the same, why not?
