# MAC 1105 Pre-Class Assignment (due $6 / 3$ by 11:59pm): 

## Rational functions

Rational functions are quotients of polynomial functions.
This means that all rational functions can be expressed as

$$
f(x)=\frac{p(x)}{q(x)}
$$

where $p(x)$ and $q(x)$ are $\qquad$ functions and $q(x) \neq 0$.
Look in your textbook (Chapter 3.5) to fill in the blank above.

1. In the definition of a rational function above, why is $q(x) \neq 0$ ?
2. The function $f(x)=\frac{2 x^{2}-5 x+7}{x-2}$ is a rational function whose numerator is ___ and denominator is $\qquad$ .

The domain of a rational function is the set of all real numbers except the $x$-values that make the denominator zero.
3. For the function $g(x)=\frac{x}{x^{2}-25}$.
a. What is the polynomial of the denominator of the function?
b. How can we find the values of $x$ that make the denominator zero?
c. Would you be able to find the x -values that make the denominator zero if you factored the denominator and set it equal to zero?
d. What are the x -values that make the denominator zero?

Since the domain of a rational function is the set of all real numbers except the $x$-values that make the denominator zero.
$e$. Is it true that we should EXCLUDE from the domain the x values we found?
f. Therefore, the domain of $g$ consists of all real numbers except ___and $\qquad$ .
g. Hence the domain can be expressed in

- set notation as $\{x \mid x \neq \ldots, x \neq \ldots\}$ or
- interval notation as $(-\infty, \ldots) \cup(\ldots, \ldots) \cup(\ldots, \infty)$

4. What is the domain of $h(x)=\frac{x^{2}-4}{x-2}$ ?
a. Is there a common factor in the numerator and denominator of $h(x)$ ?
b. If so, (i) Can the function be simplified?
(ii) What is the simplified function?
c. Does this affect the domain?
