MAC 1105 Pre-Class Assignment (due 6/10 by 11:59pm):

Inverse of Exponential functions
Read section 4.2 to prepare for class

Now that we have seen the exponential functions, let us focus on a different function that is closely connected to the exponential function.

Is exponential function a one to one function?
So can it have an inverse that is also a function?
The inverse of exponential functions are called the logarithmic functions.
Using the properties that we know about the inverse of a function (Refer section 2.7 page 302), can you find the domain and range of logarithmic functions?

If $y=b^{x}$, we know that inorder to find the inverse we just interchange x and y .
So the inverse of $y=b^{x}$ is $\boldsymbol{x}=\boldsymbol{b}^{\boldsymbol{y}}$ which is equivalent to $\boldsymbol{y}=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{b}} \boldsymbol{x}$ where $x>0$ and $b>0, b \neq 1$

The function $f(x)=\log _{b} x$ is the logarithmic function with base \mathbf{b}.
$\boldsymbol{x}=\boldsymbol{b}^{\boldsymbol{y}}$ and $\boldsymbol{y}=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{b}} \boldsymbol{x}$ are two different ways of expressing the same thing. The first equation is in exponential form and the second equivalent equation is in logarithmic form.

Show that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$ for $f(x)=b^{x}$ and $f^{-1}(x)=$ $\log _{b} x$.

Graph of $y=2^{x}$ is given below. Reflect the graph about the line $y=x$ (its given on the graph)and graph its inverse (If necessary refer section 2.7 page 307 to review graphing of function's inverse)

What is the inverse of $y=2^{x}$?

The graph of the inverse of $y=2^{x}$ is the graph of $y=\log _{2} x$

