In each case, c represents a positive real number.

To Graph:

Draw the Graph of f and:
Changes in the Equation of $y=f(x)$
Vertical shifts
$y=f(x)+c$
$y=f(x)-c$
Horizontal shifts
$y=f(x+c)$
$y=f(x-c)$
Reflection about the x-axis
$y=-f(x)$
Reflection about the y-axis
$y=f(-x)$
Vertical stretching or shrinking
$y=c f(x), c>1$
$y=c f(x), 0<c<1$

Horizontal stretching or shrinking
$y=f(c x), c>1$
$y=f(c x), 0<c<1$

Raise the graph of f by c units.
Lower the graph of f by c units.

Shift the graph of f to the left c units.
Shift the graph of f to the right c units.
Reflect the graph of f about the x-axis.

Reflect the graph of f about the y-axis.

Multiply each y-coordinate of $y=f(x)$ by c, vertically stretching the graph of f.
Multiply each y-coordinate of $y=f(x)$ by c, vertically shrinking the graph of f.

Divide each x-coordinate of $y=f(x)$ by c, horizontally shrinking the graph of f.
Divide each x-coordinate of $y=f(x)$ by $c, \quad x$ is replaced with $c x, 0<c<1$.
c is added to $f(x)$.
c is subtracted from $f(x)$.
x is replaced with $x+c$. x is replaced with $x-c$. $f(x)$ is multiplied by -1. x is replaced with $-x$.
$f(x)$ is multiplied by $c, c>1$.
$f(x)$ is multiplied by $c, 0<c<1$.
x is replaced with $c x, c>1$.

1. A project requires the transformation of the cubic function to the function $h(x)=-(x-2)^{3}+4$ You are supervising Wells and Anderson and they have a dispute over the proper order of the transformation that you will have to write into a computer program.
Wells says that the transformation should be:
i. Shift right 2
ii. Shift up 4
iii. Reflect across the x axis

Anderson says:
i. Shift right 2
ii. Reflect across the x axis
iii. Shift up 4

They are bickering. You need to settle this and use it as a teaching moment so they both know the correct transformation (and why it is correct) for future projects. Graph both set of transformations and determine which set results in the graph $h(x)=-(x-2)^{3}+4$. Explain who is correct and why.

\qquad
\qquad
\qquad

