In each case, c represents a positive real number.

To Graph:	Draw the Graph of f and:	Changes in the Equation of $y = f(x)$
Vertical shifts		
y = f(x) + c	Raise the graph of f by c units.	c is added to $f(x)$.
y = f(x) - c	Lower the graph of f by c units.	c is subtracted from $f(x)$.
Horizontal shifts		
y = f(x + c)	Shift the graph of f to the left c units.	x is replaced with $x + c$.
y = f(x - c)	Shift the graph of f to the right c units.	x is replaced with $x - c$.
Reflection about the x-axis	Reflect the graph of f about the x -axis.	f(x) is multiplied by -1 .
y = -f(x)		
Reflection about the y-axis	Reflect the graph of f about the y -axis.	x is replaced with $-x$.
y = f(-x)		
Vertical stretching or shrinking		
y = cf(x), c > 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically stretching the graph of f .	f(x) is multiplied by $c, c > 1$.
y = cf(x), 0 < c < 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically shrinking the graph of f .	f(x) is multiplied by $c, 0 < c < 1$.
Horizontal stretching or shrinking		
y = f(cx), c > 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally shrinking the graph of f .	x is replaced with cx , $c > 1$.
y = f(cx), 0 < c < 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally stretching the graph of f .	x is replaced with cx , $0 < c < 1$.

- 1. A project requires the transformation of the cubic function to the function $h(x) = -(x-2)^3 + 4$ You are supervising Wells and Anderson and they have a dispute over the proper order of the transformation that you will have to write into a computer program. Wells says that the transformation should be:
 - i. Shift right 2
 - ii. Shift up 4
 - iii. Reflect across the x axis

Anderson says:

- i. Shift right 2
- ii. Reflect across the x axis
- iii. Shift up 4

They are bickering. You need to settle this and use it as a teaching moment so they both know the correct transformation (and why it is correct) for future projects. Graph both set of transformations and determine which set results in the graph $h(x) = -(x-2)^3 + 4$. Explain who is correct and why.

