Exam #3, ver B

March 26, 2018

Name ______

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 7 points each. Part II contains four open ended questions worth 16 points each if not stated otherwise.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Let f and g be functions. The expression $(f \circ g)(x)$ is equivalent to
 - (a) f(x) + g(x)
 - (b) f(x)g(x)
 - (c) g(f(x))
 - (d) f(g(x))
 - (e) None of the above
- 2. The inverse function of f(x) = 5x + 3 is
 - (a) $f^{-1}(x) = 5x + 3$
 - (b) $f^{-1}(x) = \frac{x+3}{5}$

 - (c) $f^{-1}(x) = \frac{x-5}{3}$ (d) $f^{-1}(x) = \frac{x-3}{5}$
 - (e) None of the above
- 3. The range of the parabola $y = -2(x-4)^2 + 4$ is
 - (a) $(-\infty,\infty)$
 - (b) $(4, \infty)$
 - (c) $(-\infty, 4]$
 - (d) $[4, \infty)$
 - (e) None of the above.
- 4. Select a correct statement for the rational function

$$f(x) = \frac{-2x^3 + 3x - 12}{x^2 + 4}$$

- (a) f has a horizontal asymptote y = -2 and vertical asymptotes $x = \pm 2$
- (b) f has a horizontal asymptote y = -2 and no vertical asymptote
- (c) f has no horizontal asymptote and vertical asymptotes $x = \pm 2$
- (d) f has no horizontal asymptote and no vertical asymptote
- (e) None of the above.

Part II

5. Is $f(x) = \frac{x-1}{x+2}$ a one-to-one function? If yes, find its inverse.

6. Find the standard equation of the parabola below, find its range and maximum or minimum.

$$f(x) = 2x^2 + 12x - 2$$

7. Find a quadratic function that has a vertex (3,-2) and y-intercept at y=7.

- 8. (24 points) Graph the function $f(x) = \frac{x-2}{x^2+4x+3}$
 - (a) Domain
 - (b) y-intercept
 - (c) x-intercept
 - (d) Vertical asymptote(s)
 - (e) Horizontal asymptote(s)

(f) Symmetries

(g) Evaluate the function between the x-intercept(s), vertical asymptote(s) and hole(s)

(h) Graph

		:	:	:		:	:	:	1
				9					
				-	-				
				8			÷		
				7	-				
				6			+		
				5					
1			1 1 1	4			-		1
				4					
				3	-				
				2			¦		
				2					
				1	-				1
-9 -	8 -7 -	6 - 5 -	4 - 3 -	2 - 1	1 2	2 3 4	450	57	\$ 9
-9 -	8 -7 -	6 -5 -	4 -3 -	2 -1 -1	. 1 2	2 3 4	4 5 (57	8 9
-9 -	8 -7 -	6 -5 -	4 -3 -	2 -1 -1 -2	. 1 2	2 3 4	4 5 (57	8 9
-9 -	8 -7 -	6 –5 –	4 -3 -	2	. 1 2	2 3 4	4 5 (5 7	8 9
-9 -	8 -7 -	6 –5 –	4 -3 -	-2 -3	1 2	2 3 4	4 5 (5 7	8 9
-9 -	8 -7 -	6 –5 –	4 -3 -	2	1 2 	2 3 4	4 5 (5 7	8 9
_9 _	8 -7 -	6 –5 –	4 -3 -		1 2	2 3 4	4 5 (5 7	8 9
_9 _	8 -7 -	6 –5 –	4 -3 -		1 2	2 3 4	4 5 (5 7	8 9
_9 _	8 -7 -	6 –5 –	4 -3 -		1 2	2 3 4	4 5 (5 7	8 9
_9 _	8 -7 -	6 –5 –	4 -3 -		1 2	2 3 4	4 5 (5 7	8 9
_9 _	8 -7 -	6 –5 –	4 -3 -	-2 -3 -5 -5 -7		2 3 4	4 5 (5 7	8 9
_9 _	8 –7 –	6 – 5 –	4 -3 -	-2 -3 -5 6 -7 -7		2 3 4	4 5 (5 7	8 9
_9 _ 	8 –7 –	6 –5 –	4 -3 -	-2 -3 -5 -5 -7		2 3 4	4 5 (5 7	8 9

9. (5 extra pts) Find the horizontal asymptote for the following functions

(a)
$$f(x) = \frac{-3x^2 + 2}{2x + 961}$$

(b)
$$f(x) = \frac{-3x^2+2}{2x^2+961}$$

(c)
$$f(x) = \frac{-3x^2+2}{2x^3+961}$$

10. (5 extra pts) Describe the difference between polynomial and rational functions.

11. (0 pts) How many hours in total did you study for this exam over the weekend?

0 1 2 3 4 5 6 7 8 9 10 11 12 13	14 +
--	------

12. (0 pts) Do you think that you could studied better? Yes No

This page is intentionally left blank.