Exam #4, ver B

April 16, 2018

Name ______

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains five multiple choice questions worth 7 points each. Part II contains five open ended questions worth 15 points each.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Find the domain of $\log(x-3)$
 - (a) (e,∞)
 - (b) $(-\infty,\infty)$
 - (c) $(3,\infty)$
 - (d) $[3,\infty)$
 - (e) None of the above
- 2. Which of the following is an exponential function
 - (a) $y = x^3$
 - (b) y = 2x 1
 - (c) $y = 5^{x+3}$
 - (d) $y = \frac{2x-1}{x^2+1}$
 - (e) None of the above
- 3. The value of $\log_4(2)$ is
 - (a) 1
 - (b) 1/2
 - (c) $\sqrt{2}$
 - (d) 2
 - (e) None of the above
- 4. The equivalent exponential form of the equation $\log_5(a) = 2$ is
 - (a) $2^5 = a$
 - (b) $2^a = 5$
 - (c) $5^a = 2$
 - (d) $5^2 = a$
 - (e) None of the above
- 5. The expression $2\log(x) \log(y) 3\log(z)$ can be condensed to the following form.
 - (a) $\log\left(\frac{2x}{yz^3}\right)$
 - (b) $\frac{\log x^2}{\log(yz^3)}$
 - (c) $\log\left(\frac{x^2z^3}{y}\right)$
 - (d) $\log\left(\frac{x^2}{yz^3}\right)$
 - (e) None of the above

Part II

6. Solve the equation.

 $\log_2(x+3) + \log_2(x+4) = 1$

7. Solve the equation.

 $3 + e^{2x-1} = 5$

- 8. Graph $y = 4\log_3(x+1) + 1$ using transformations. Start with the graph of a basic function **plot accurately as least three points** and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function. Draw asymptotes.
- (i) Basic function:

(ii) transformation:

y =

				0					
				8					
				7	-				1
				-					1
				Э	-				
				4					
				3	-				
				2					
				1					
	1								
0	0 7	6 5	1 2	2 1	1	2 2	1 5 4	\$ 7	<u> </u>
-9 -	8 - 7 -	6 - 5 -	4 - 3 -	2 - 1 - 1	1	2 3 4	1 5 (57	8 9
-9 -	8 - 7 -	6 -5 -	4 -3 -	2 - 1 -1	1	2 3 4	1 5 (57	89
-9 -	8 – 7 –	6 –5 –	4 -3 -	-1 2	1	2 3 4	4 5 (5 7	89
_9 _	8 –7 –	6 –5 –	4 -3 -	2 -1 -1 -2 -3	1 :	2 3 4	5 (6 7	89
<u> </u>	8 – 7 –	6 –5 –	4 -3 -	-1 2	1 :	2 3 4	\$ 5 (5 7	8 9
-9 -	8 –7 –	6 –5 –	4 -3 -	-1 -2 -3 4	1 :	2 3 4	5 (5 7	8 9
-9 -	8 -7 -	6 – 5 –	4 - 3 -	-1 2	1 :	2 3 4	5 (5 7	\$ 9
-9 -	8 -7 -	6 – 5 –	4 – 3 –	-1 -2 -3 4	1 :	2 3 4	5 (5 7	\$ 9
<u>-9</u> -	8 –7 –	6 – 5 –	4 -3 -	-1 -2 -3 4	1 :	2 3 4	5 (6 7 	8 9
<u>-9</u> -	8 -7 -	6 – 5 –	4 - 3 -	-1 -2 -3 4	1 :	2 3 4	5 (5 7	8 9
<u>-9</u> -	8 -7 -	6 –5 –	4 -3 -	-1 -3 4 -5 6 -7 8		2 3 4	5 (5 7	8 9
<u>-9</u> -	8 –7 –	6 –5 –	4 -3 -	-1 -3 -5 -7	1 :	2 3 4	5 (5 7	8 9

(iii) transformation:

y =

(iv) transformation:

y=

9. Solve the following inequality

(a) $x^3 + 3x^2 \ge x + 3$

(b) $\frac{x+1}{x+3} \le 0$

10. (0 pts) How many hours in total did you study for this exam over the weekend?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

11. (0 pts) Do you think that you could studied better? Yes No

This page is intentionally left blank.