1 1.4 Complex Numbers

Definition 1.1. The imaginary unit i is defined as

 $i = \sqrt{-1}$, where $i^2 = -1$.

Example 1.1. $\sqrt{-25} = \sqrt{-1} * \sqrt{25} = i * 5 = 5i$ Example 1.2. $(5i)^2 = 5^2 * i^2 = 25 * (-1) = -25$ Exercise 1.1. Simplify the following.

1. (5-11i) + (7+4i)

2.
$$(-5+i) - (-11-6i)$$

3. 4i(3-5i)

4.
$$(7-3i)(-2-5i)$$

5. 7i(2-9i)

6. (5+4i)(6-7i)

To divide two complex numbers we have to multiply the denominator by its conjugate to eliminate i.

Definition 1.2. Given a complex number a + bi and a - bi, the complex conjugate is a - bi and a + bi, respectively.

Example 1.3.

$$\frac{3i}{4+i} = \frac{3i}{4+i} * \frac{4-i}{4-i} = \frac{3i(4-i)}{(4+i)(4-i)} = \frac{12i-3i^2}{16-4i+4i-i^2} = \frac{12i-3*(-1)}{16-(-1)} = \frac{3+12i}{17} = \frac{3}{17} + \frac{12}{17}i$$

Let's practice this!

Exercise 1.2. Divide and express the result in standard form.

1.
$$\frac{5i}{7+i}$$

2. $\frac{7+4i}{2-5i}$

Let's look at Square Root. Squaring 5 or -5 will give you 25, i.e., $5^2 = (-5)^2 = 25$. Therefore, every number has two square roots. For example $\sqrt{36} = 6$ and $\sqrt{36} = -6$. To make sense in this, we will call the positive number to be **the (principal) square root**.

Exercise 1.3. Find a square root for the following numbers: 4, 9, 36, 81.

Exercise 1.4. Find the (principal) square root for the following numbers: 4, 9, 36, 81.

Are your answers for the two exercises above the same? Do they have to be the same?

Similarly to positive numbers, we have two square roots for negative numbers, i.e., $\sqrt{-25} = 5i$ and $\sqrt{-25} = -5i$. The **principal square root** of a negative number is the positive complex number. **Exercise 1.5.** Find a square root for the following numbers: -25, -49, -64.

Exercise 1.6. Find the principal square root for the following numbers: -25, -49, -64.

Are your answers for the two exercises above the same? Do they have to be the same?

Exercise 1.7. Perform the indicated operations and write the result in standard form (a+bi). Use the principal square roots when needed.

1.
$$\sqrt{-18} - \sqrt{-8}$$

2.
$$(-1+\sqrt{-5})^2$$

3.
$$\frac{-25 + \sqrt{-50}}{15}$$