Exam \#2

February 14, 2018

Name \qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of three parts. Part I contains six multiple choice questions worth 5 points each. Part II contains four open ended questions. Part III contains two conceptual questions.

Part I

Choose your answer from available choices. No partial credit will be given for wrong answers.

1. Find the exact value of $\sin \left(600^{\circ}\right)$
(a) $\frac{1}{2}$
(b) $\frac{-1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{-\sqrt{3}}{2}$
(e) None of the above
2. Find the exact value of $\tan \left(225^{\circ}\right)$
(a) $\sqrt{3}$
(b) $-\sqrt{3}$
(c) $\frac{\sqrt{3}}{3}$
(d) $\frac{-\sqrt{3}}{3}$
(e) None of the above
3. Find the exact value of $\cos \left(\frac{7 \pi}{6}\right)$
(a) $\frac{1}{2}$
(b) $\frac{-1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{-\sqrt{3}}{2}$
(e) None of the above
4. Find the exact value of $\sin ^{-1}\left(-\frac{1}{2}\right)$
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{3}$
(c) $\frac{7 \pi}{6}$
(d) $-\frac{\pi}{6}$
(e) None of the above
5. Find the exact value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{3}$
(c) $\frac{7 \pi}{6}$
(d) $-\frac{\pi}{6}$
(e) None of the above
6. Find the exact value of $\cos ^{-1}(-2)$
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{3}$
(c) $\frac{7 \pi}{6}$
(d) $-\frac{\pi}{6}$
(e) None of the above

Part II

7. (a) (15 pts) Find the period, amplitude, phase shift and plot the following function using the five key points

$$
-3 \sin \left(\frac{\pi}{2} x+\pi\right)
$$

(b) (5 pts) Use the part (a) to graph $-3 \csc \left(\frac{\pi}{2} x+\pi\right)$

8. (15 pts) Graph the function below

$$
y=-2 \tan \left(2 x-\frac{\pi}{2}\right)
$$

9. (5 pts each) Find the exact value of the following. [Show your work for full credit]
(a) $4 \cos \left(34^{\circ}\right) \csc \left(56^{\circ}\right)+2 \sin \left(-67^{\circ}\right) \sec \left(23^{\circ}\right)$
(b) $2+\frac{\sin \left(41^{\circ}\right)}{\csc \left(41^{\circ}\right)}+\cos \left(41^{\circ}\right) \sin \left(49^{\circ}\right)$
10. (5 pts each) Evaluate the expression below. [Show your work for full credit]
(a) $\sin ^{-1}\left(\sin \left(\frac{7 \pi}{6}\right)\right)$
(b) $\sin \left(\sin ^{-1}\left(-\frac{1}{3}\right)\right)$
(c) $\cos \left(\tan ^{-1}(-\sqrt{3})\right)$

Part III

11. (10 pts) Why does $y=\tan (x)$ and $y=\sec (x)$ have the same vertical asymptotes?
12. (10 pts)
(a) Why do we restrict the domain of trigonometric functions to define the inverse trigonometric functions?
(b) Why is the restricted domain of cosine $[0, \pi]$ and not $[-\pi / 2, \pi / 2]$?
