MAC 1114, Spring 2018

Exam \#3

March 9, 2018

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.

Choose your answer from available choices. No partial credit will be given for wrong answers.

1. $(6 \mathrm{pts})$ Find the exact value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
(a) $\frac{5 \pi}{6}$
(b) $\frac{7 \pi}{6}$
(c) $\frac{\pi}{6}$
(d) $-\frac{\pi}{6}$
(e) None of the above
2. (6 pts) Find the exact value of $\sin ^{-1}\left(\sin \left(\frac{4 \pi}{3}\right)\right)$
(a) $\frac{4 \pi}{3}$
(b) $-\frac{4 \pi}{3}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{3}$
(e) None of the above
3. (6 pts) Find the exact value of $\sin \left(210^{\circ}\right)$
(a) $\frac{1}{2}$
(b) $\frac{-1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{-\sqrt{3}}{2}$
(e) None of the above
4. (6 pts) Use the sum and difference formulas to find the exact value of $\cos \left(15^{\circ}\right)$
(a) 1
(b) $\frac{\sqrt{2}-\sqrt{6}}{4}$
(c) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(d) $\frac{\sqrt{2}+\sqrt{6}}{4}$
(e) None of the above
5. (6 pts) Given the triangle depicted below with $a=\sqrt{3}$ and $b=1$, find β.

(a) $\beta=\frac{\pi}{6}$
(b) $\beta=\frac{\pi}{4}$
(c) $\beta=\frac{\pi}{3}$
(d) $\beta=-\frac{\pi}{6}$
(e) None of the above
6. (6 pts each) Is the following statement true or false? If it is false, rewrite it to make it true. (Do not explain why is the statement false)
(a) The domain if $y=\csc ^{-1} x$ is $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$.
(b) The double angle formula for sine has 3 different variations.
(c) The graph of $y=\tan (x)$ has infinite number of vertical asymptotes.
7. (10 pts each) Solve the following equations
(a) $4 \cos (x)+2=0$ in $[0,2 \pi)$
(b) $2 \sin ^{2} \theta=3 \cos (-\theta)+3$ in $[0,2 \pi)$
8. (6 pts) Find the exact value of

$$
1+\cos ^{2}\left(64^{\circ}\right)+\cos ^{2}\left(26^{\circ}\right)
$$

9. (10 pts each) Verify the identity
(a) $\cos (x-y)-\cos (x+y)=2 \sin x \sin y$
(b) $\tan \theta+\cot \theta=\frac{2}{\sin (2 \theta)}$
10. (6 pts) Why can't we cancel $\tan x$ from both sides when finding the solutions of $\tan x \sin x=\tan x$?
11. (10 pts) A hot air balloon is east of a stadium 700 ft above the ground. Two sightings of the balloon are made, one at the farther side of the stadium with an angle of elevation 27° and one from the side of the stadium closest to the balloon with an angle of elevation 38°. How wide is the stadium? Draw a sketch first. [Hint: Your answer should be left in a calculator ready form, i.e., $\frac{\sqrt{3}}{\sin 10^{\circ}}, \frac{\cos 12^{\circ}}{\tan 39^{\circ}+\sin 49^{\circ}}$, etc.]
