Spring 2018 Due Date: Friday, 3/30

Name:

SHOW ALL YOUR WORK FOR EACH PROBLEM TO GET FULL CREDIT. PLEASE BE NEAT.

Direction: Read through sections 7.3, 7.4 in your book and answer the following questions.

- 1. Plot the following points in a rectangular coordinate system.
 - a) (-2, 3) b) (-2, -3) c) (2, -3)

- 2. Identify the shape of following equations and then graph them in a rectangular coordinate system.
 a) x² + y² =1
 b) y= -3
 c) x= 3
- 3. Plot the point $\left(3, \frac{\pi}{6}\right)$ in polar coordinates. (Section 7.3)
 - a) Find other polar coordinates (r, θ) of this same point for which r > 0, $2\pi \le \theta < 4\pi$.
 - b) Find the rectangular coordinates of the point.

5. Convert the point from rectangular coordinates to polar coordinates. (Section 7.3)

(-3,3)

4. Transform the polar equation to an equation in rectangular coordinates. Identify the graph of the equation (Section 7.3)

$$r\cos\theta = 4$$

5. a. Find the exact value of r for $\theta = \frac{\pi}{6}$, $\theta = \pi$, and $\theta = \frac{2\pi}{3}$ if $r = 1 + 2\sin(\theta)$. b. Plot the pairs, (r, θ) , which you have found in part-a, in the polar grid (Section 7.3)

- 6. True or False. If false, correct it.
 - a. $\cos(-\theta) = \cos(\theta)$
 - b. $\sin(-\theta) = \sin(\theta)$
 - c. $-r = 1 \cos(-\theta)$ is the same as $r = -1 \cos(\theta)$.

7. Identify the equation given in polar coordinates (as a line, circle, cardioid, limaçon, rose). Name the center and the radius if it is a circle; name the type if it is a limaçon, state the number of pedals if it is a rose. (Section 7.4)

a. $r = 2\cos\theta$

b.
$$\theta = \frac{\pi}{2}$$

- c. $r = -3\sin 4\theta$
- d. $r = 2 + 4\sin\theta$
- e. $r = 5 2 \cos(\theta)$