Florida International University
Trigonometry-MAC1114
Pre-Class Assignment 11

Spring 2018
Due Date: Friday, 3/30

Name: \qquad

SHOW ALL YOUR WORK FOR EACH PROBLEM TO GET FULL CREDIT. PLEASE BE NEAT.

Direction: Read through sections 7.3, 7.4 in your book and answer the following questions.

1. Plot the following points in a rectangular coordinate system.
a) $(-2,3)$
b) $(-2,-3)$
c) $(2,-3)$
2. Identify the shape of following equations and then graph them in a rectangular coordinate system.
a) $x^{2}+y^{2}=1$
b) $y=-3$
c) $x=3$
3. Plot the point $\left(3, \frac{\pi}{6}\right)$ in polar coordinates. (Section 7.3)
a) Find other polar coordinates (r, θ) of this same point for which $r>0, \quad 2 \pi \leq \theta<4 \pi$.
b) Find the rectangular coordinates of the point.

4. Convert the point from rectangular coordinates to polar coordinates. (Section 7.3) $(-3,3)$
5. Transform the polar equation to an equation in rectangular coordinates. Identify the graph of the equation (Section 7.3)

$$
r \cos \theta=4
$$

5. a. Find the exact value of r for $\theta=\frac{\pi}{6}, \theta=\pi$, and $\theta=\frac{2 \pi}{3}$ if $r=1+2 \sin (\theta)$.
b. Plot the pairs, (r, θ), which you have found in part-a, in the polar grid (Section 7.3)
6. True or False. If false, correct it.
a. $\cos (-\theta)=\cos (\theta)$
b. $\sin (-\theta)=\sin (\theta)$
c. $-r=1-\cos (-\theta)$ is the same as $r=-1-\cos (\theta)$.
7. Identify the equation given in polar coordinates (as a line, circle, cardioid, limaçon, rose). Name the center and the radius if it is a circle; name the type if it is a limaçon, state the number of pedals if it is a rose. (Section 7.4)
a. $r=2 \cos \theta$
b. $\quad \theta=\frac{\pi}{2}$
c. $r=-3 \sin 4 \theta$
d. $r=2+4 \sin \theta$
e. $r=5-2 \cos (\theta)$
