Trigonometry-MAC1114
Pre-Class Assignment 7
Name: \qquad

SHOW ALL YOUR WORK FOR EACH PROBLEM TO GET FULL CREDIT. PLEASE BE NEAT.

Direction: Read through sections 6.1 and 6.2 in your book and answer the following questions.

1. List and label the Reciprocal and the Pythagorean identities. (Section 5.2)
2. Find and simplify the followings (without using a calculator)
a) $\frac{2}{3}+\frac{5}{7}$
b) $\frac{5}{7}+2$
C) $\frac{5}{7} \cdot \frac{5}{7}$
d) $\frac{5}{7} \cdot \frac{7}{5}$
e) $\frac{5}{7} \div \frac{3}{4}$
3. Factor out the following expressions.
a) $x(5 x+4)+2(5 x+4)$
b) $x^{3}-4 x^{2}-2 x+8$
c) $x^{2}-100$
4. Verify the identity by using question \#1(Section 6.1)

$$
\csc \theta \cos \theta=\cot \theta
$$

5. Identify the mistake made in solving the following equations. Write a sentence explaining why it is wrong:
a: $\frac{a+b}{x+b}=\frac{a}{x}{ }^{\text {Mistake that was made: }}$
$\mathrm{b}: \frac{x}{\left(\frac{a}{b}\right)}=\frac{x a}{b}$ Mistake that was made:
$\mathrm{c}:\left(a^{3}\right)^{2}=a^{5}{ }^{\text {Mistake that was made: }}$
$\mathrm{d}:(a+b)^{2}=a^{2}+b^{2}$ Mistake that was made: \quad,
6. a) Multiply $(a-b)(a+b)$ to show that $(a-b)(a+b)=a^{2}-b^{2}$.
b) How does solving (a) help you to simplify $\frac{\sin ^{2}(x)-\cos ^{2}(x)}{\sin (x)+\cos (x)}$? Use factoring to simplify the expression (Section 6.1).
7. a. Write the sum and difference formulas for sine and cosine functions. (Section 6.2)
b. Give an example to show why $\cos (\alpha+\beta)=\cos (\alpha)+\cos (\beta)$ is not true.
