Exam \#1, ver A

January 30, 2017

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of two parts. Part I contains five multiple choice questions worth 5 points each. Part II contains 7 open ended questions worth 12 points each if not stated otherwise.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

1. If $f(x)=\frac{2}{x+3}$ and $g(x)=\frac{4}{x}$, then $(f \circ g)(x)$ is
(a) $2 x+6$
(b) $\frac{2}{3 x+4}$
(c) $\frac{2 x}{3 x+4}$
(d) $\frac{2 x}{x+3}$
(e) None of the above

The domain of $f \circ g$ is
(a) $(0, \infty)$
(b) $(-\infty, \infty)$
(c) $(-\infty,-3) \cup(-3, \infty)$
(d) $(-\infty,-4 / 3) \cup(-4 / 3,0) \cup(0, \infty)$
(e) None of the above.
2. The graphs of $f(x)$ and $g(x)$ are given below. The value of $\left(\frac{f}{g}\right)(-3)$ is

(a) 0
(b) -1
(c) -3
(d) -4
(e) None of the above.
3. If f is one-to-one and $f(-2)=7$, then which of the following statements are true? (Select all true statements.)
(a) $f^{-1}(7)=2$
(b) f is even
(c) $(-2,7)$ is on the graph of the graph of f
(d) $(1,7)$ is on the graph of $y=f(-2 x)$
(e) None of the above.
4. The graph of a one-to-one function f is given below. Which of the following is the graph of its inverse?

(a)

(b)

(c)

(d)

(e) None of the above.
5. If the graph of the function $y=x^{2}$ is vertically stretched by a factor of 2 and then shifted to the right by 5 then the resulting function has the equation
(a) $y=2(x+5)^{2}$
(b) $y=2(x-5)^{2}$
(c) $y=2 x^{2}+5$
(d) $y=2 x^{2}-5$
(e) None of the above.

Part II

6. Graph the function $f(x)= \begin{cases}\sqrt{3-x} & , x<-1 \\ x+2 & ,-1 \leq x \leq 2 \\ x^{2} & x>2\end{cases}$

7. Given the graph of $f(x)$, use transformations to graph $y=-3 f(-x+2)$. Do one transformation at a time. Name the transformation and write the equation of the resulting function.

(i) transformation:

(iii) transformation:

(ii) transformation:
$\mathrm{y}=$

(iv) transformation:
$\mathrm{y}=$

8. Find the difference quotient for $f(x)=\frac{3}{x-4}$.
9. Find the inverse of $f(x)=\frac{5}{x}+1$
10. Find the domain of $f(x)=-12 \sqrt{4 x+3}$
11. Using the given graph of the function f, answer the parts (a)-(f) below.

(a) Find the domain of f. Express it in interval notation.
(b) Find the range of f. Express it in interval notation.
(c) Find the x-intercepts.
(d) Find the y-intercepts.
(e) Find the intervals on which f is increasing.
(f) Find the intervals on which f is decreasing.
12. (13 points) Find two functions $f(x)$ and $g(x)$ (neither of them identity) so that $h(x)=f(g(x))$, where

$$
h(x)=\frac{7}{(3 x-7)^{3}}
$$

