MAC 1140, Spring 2018

Exam \#3

March 22, 2018

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of two parts. Part I contains five multiple choice questions worth 4 points each. Part II contains six open ended questions worth 8 points each if not stated otherwise.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

1. Which of the following is an exponential function?
(a) $f(x)=x^{3}-\frac{3}{x^{2}}$
(b) $f(x)=\log _{3}(2 x-3)$
(c) $f(x)=(2 x)^{5 / 3}$
(d) $f(x)=3^{2 x}$
(e) None of the above
2. The value of $\log _{7}\left(\log _{4} 4\right)$ is
(a) -1
(b) 1
(c) 0
(d) 5
(e) None of the above
3. The solution of the equation $\log _{5} x+\log _{5} 3=\log _{5} 18$ is
(a) 6
(b) 18
(c) -1
(d) 3
(e) None of the above
4. The expression $3 \log (x)-\frac{1}{2} \log (y)+3 \log (z)$ can be condensed to the following form.
(a) $\log \left(\frac{3 x}{\frac{1}{2} y z^{3}}\right)$
(b) $\frac{\log x^{3}}{\log \left(\sqrt{y} z^{3}\right)}$
(c) $\log \left(\frac{x^{3} z^{3}}{\sqrt{y}}\right)$
(d) $\log \left(\frac{x^{2}}{\sqrt{y} z^{3}}\right)$
(e) None of the above
5. The foci of the ellipse $\frac{(x+3)^{2}}{16}+\frac{y^{2}}{36}=1$ are
(a) $(-3 \pm 2 \sqrt{5}, 0)$
(b) $(-3, \pm 2 \sqrt{5})$
(c) $(3 \pm 2 \sqrt{5}, 0)$
(d) $(3, \pm 2 \sqrt{5})$
(e) None of the above

Part II

6. Let $f(x)=\log _{2}(-x+3)$
(a) (4 pts) Find the domain of f. Show your work, and answer alone will get no credit.
(b) (8 pts) Graph the function using transformations. Start with the graph of a basic function - plot accurately at least three points and use them to perform the transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function. Draw asymptotes, if any.
(i) Basic function:

$$
\mathrm{y}=
$$

(iii) transformation:

$$
\mathrm{y}=
$$

(ii) transformation:
$\mathrm{y}=$

(c) (5 pts) Find the inverse of $f(x)=\log _{2}(-x+3)$
7. (8 pts each) Solve the equation.
(a) $3+e^{2 x-1}=5$
(b) $4^{2 x+1}=\frac{1}{4}$
(c) $\ln (x+9)-\ln (2 x)=\ln (x+2)$
(d) $\log _{4}\left(x^{2}-4\right)=2$
8. Write as the sum and/or difference of logarithms. Express powers as factors.

$$
\ln \left(\frac{(x-2)^{5}(x+1)^{3}}{x^{3}}\right)
$$

9. If $f(x)=\log _{6} x$ and $g(x)=\log _{6}(x+1)$, then what are the solutions of $(f+g)(x)=1$?
10. Graph $y=e^{x+5}-3$ using transformations. Start with the graph of a basic function - plot accurately at least three points and use them to perform the transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function. Draw asymptotes, if any.
(i) Basic function:
$y=$

(iii) transformation:
$\mathrm{y}=$

(ii) transformation:

$$
\mathrm{y}=
$$

11. Write the standard equation of the ellipse with vertex at $(3,-1)$ and foci at $(1,-1)$ and $(-3,-1)$.
12. (9 pts) Transform the general equation of an ellipse below into its standard form. Graph the ellipse and determine the coordinates of the center, vertices and foci.

$$
9 x^{2}+16 y^{2}+32 y-128=0
$$

This page is intentionally left blank.

