MAC 2233, Spring 2018

Exam \#2, ver B

March 1, 2018

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

1. (8 pts each) Differentiate the following functions and simplify your answers
(a) $f(x)=\left(3-x^{5}\right)^{3}$
(b) $g(x)=\sqrt{2+x-x^{2}}$
2. (4 pts) Suppose the revenue (in cents) of manufacturing q units is $R(q)=\sqrt{q}-5$. Use marginal analysis to estimate the revenue of selling the 5th unit.
3. (8 pts) Determine the critical numbers of the given function and classify each critical point as a relative maximum, relative minimum, or neither.

$$
f(x)=\left(x^{2}-5\right)^{4}
$$

4. (8 pts) Sketch a function that has the following properties. On your sketch, identify any inflection point(s) and relative extrema.

- $f^{\prime}(x)>0$ when $x \neq 2$
- $f^{\prime}(x)=0$ when $x=-2$
- $f^{\prime \prime}(x)<0$ when $x<-2$
- $f^{\prime \prime}(x)>0$ when $-2<x<2$
- $f^{\prime \prime}(x)<0$ when $x>2$

5. (20 pts) Find the intervals where the function is increasing/decreasing, concave up/down and sketch the graph using this information. [Hint: Find the x- and y- intercepts before graphing.]

$$
f(x)=\frac{x-2}{x+3}
$$

6. (16 pts each) Find the intervals where the function is increasing/decreasing and concave up/down.
(a) $f(x)=x^{2}-\frac{8}{x}$
(b) $g(x)=\sqrt{x^{2}+9}$
7. (8 pts) Find the absolute minimum and maximum of the function $f(x)=\frac{1}{x^{2}-4}$ in the interval $[-1,2]$.
8. (7 pts) Is the following statement true or false? Explain why and if false, correct the statement.

To find a relative minimum or maximum of a function, we have to look for the points where the second derivative is zero. If the x-coordinate of the respective point is positive, then the point is a relative maximum. If the x-coordinate of the respective point is negative, then the point is a relative minimum.
9. (7 pts) Is the following statement true or false? Explain why and if false, correct the statement.

An inflection point is a point where the function changes from decreasing to increasing or increasing to decreasing.

Use this page if you need additional space.

