Exam \#4

April 17, 2017

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

1. (8 pts each) Verify that $F(x)$ is an antiderivative of $f(x)$.
(a) $F(x)=2-x+x^{4} ; f(x)=4 x^{3}-1$
(b) $F(x)=\ln (-x)+7 ; f(x)=\frac{1}{x}$
(c) $F(x)=\ln (\ln (x)) ; f(x)=\frac{1}{x \ln (x)}$
2. (8 points each) Find the indefinite integral.
(a) $\int 5-6 x^{2} \mathrm{~d} x$
(b) $\int \frac{3-2 x^{2}}{x} \mathrm{~d} x$
3. (10 points each) Find the indefinite integral [Hint: use substitution]
(a) $\int \sqrt{2-t} \mathrm{~d} t$
(b) $\int \frac{t^{3}}{\sqrt{t^{4}-2}} \mathrm{~d} t$
(c) $\int \frac{2 \ln (x)}{x} \mathrm{~d} x$
4. (10 points each) Evaluate the integral and simplify your answer.
(a) $\int_{1}^{3} 2 x-3 \mathrm{~d} x$
(b) $\int_{\frac{1}{2}}^{1} \frac{e^{\frac{1}{x}}}{x^{2}} \mathrm{~d} x$
5. (10 pts) A manufacturer estimates that the marginal cost of producing qunits of a certain commodity is $C^{\prime}(q)=3 q^{2}-12 q+12$ dollars per unit. If the cost of producing 1 unit is $\$ 20$, what is the cost of producing 5 units? [You can leave your answer in calculator ready form. No simplification is necessary.]
6. (3 extra credit points) Find the exact value of the following integral. Simplify your answer.

$$
\int_{e}^{e^{e}} \frac{1}{x \ln x} \mathrm{~d} x
$$

7. (3 extra credit points) Evaluate

$$
\int \frac{x-4}{x+1} \mathrm{~d} x
$$

8. (4 extra credit points) Erika and Jacob are arguing. Erika says that an antiderivative of $\frac{1}{x}$ is $\ln x$ and Jacob says that an antiderivative of $\frac{1}{x}$ is $\ln (2 x)$. Can you decide who, if anyone, is right and who is wrong? Explain your answer.
